Pregunta
upstudy study bank question image url

The sequence below is arithmetic. Complete parts (a) through (d) below. \( 6,9,12,15, \ldots \) (a) Find the common difference. The common difference is \( \mathrm{d}=3 \). (Type a whole number.) (b) Find the eighth term. The eighth term is \( \mathrm{a}_{8}=27 \). (Type a whole number.) (c) Find a recursive rule for the nth term. \( \mathrm{a}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n}}-1+3 \) (Type an equation.) (d) Find an explicit rule for the nth term. \( \square \) (Type an equation.) Get more help \& (Tlear all

Ask by Pritchard Frank. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The explicit rule for the nth term is \( a_n = 3n + 3 \).

Solución

Sure, let's complete part **(d)** of the problem. ### (d) Find an explicit rule for the nth term. An **explicit rule** for an arithmetic sequence allows you to find the \( n \)th term directly without needing to reference the previous term. The general form of the explicit rule for an arithmetic sequence is: \[ a_n = a_1 + (n - 1) \times d \] Where: - \( a_n \) is the \( n \)th term. - \( a_1 \) is the first term. - \( d \) is the common difference. - \( n \) is the term number. Given the sequence: \( 6, 9, 12, 15, \ldots \) - \( a_1 = 6 \) - \( d = 3 \) (from part a) Plugging these values into the formula: \[ a_n = 6 + (n - 1) \times 3 \] Simplify the equation: \[ a_n = 6 + 3n - 3 \] \[ a_n = 3n + 3 \] **Therefore, the explicit rule for the nth term is:** \[ a_n = 3n + 3 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The explicit rule for the \( n \)th term of this arithmetic sequence can be found using the formula \( a_n = a_1 + (n-1)d \), where \( a_1 \) is the first term and \( d \) is the common difference. Plugging in the values gives us \( a_n = 6 + (n-1) \cdot 3 \), which simplifies to \( a_n = 3n + 3 \). Another fun fact about arithmetic sequences is that they can be found in various aspects of everyday life! For example, if you're setting a schedule where you increase your study time by 15 minutes each week, you’re effectively creating an arithmetic sequence with a common difference of 15. This can help you steadily prepare for upcoming exams!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad