Find the exact value of \( \cos ^{2}\left(\frac{1}{2} \cos ^{-1} \frac{3}{5}\right) \) \( \cos ^{2}\left(\frac{1}{2} \cos ^{-1} \frac{3}{5}\right)=\square \) (Type an exact answer, using radicals as needed.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the exact value of \( \cos^{2}\left(\frac{1}{2} \cos^{-1} \frac{3}{5}\right) \), we can use the half-angle identity for cosine: \[ \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \cos(\theta)}{2}} \] In this case, let \( \theta = \cos^{-1} \frac{3}{5} \). From this, we know that: \[ \cos(\theta) = \frac{3}{5} \] Now apply the half-angle identity: \[ \cos\left(\frac{1}{2} \theta\right) = \sqrt{\frac{1 + \cos(\theta)}{2}} = \sqrt{\frac{1 + \frac{3}{5}}{2}} = \sqrt{\frac{\frac{5}{5} + \frac{3}{5}}{2}} = \sqrt{\frac{\frac{8}{5}}{2}} = \sqrt{\frac{8}{10}} = \sqrt{\frac{4}{5}} = \frac{2}{\sqrt{5}} \] Now, since we need \( \cos^{2}\left(\frac{1}{2} \theta\right) \): \[ \cos^{2}\left(\frac{1}{2} \theta\right) = \left( \frac{2}{\sqrt{5}} \right)^{2} = \frac{4}{5} \] Thus, the exact value is: \[ \cos^{2}\left(\frac{1}{2} \cos^{-1} \frac{3}{5}\right) = \frac{4}{5} \] Therefore, the answer is \[ \boxed{\frac{4}{5}} \]