Pregunta
upstudy study bank question image url

Given the quadratic number pattern: \( 69 ; 0-63 ; \ldots \) \( 4.1 \quad \) Write down the value of the next term in the pattern. \( 4.2 \quad \) Calculate an expression for the \( n^{\text {th }} \) term of the quadratic pattern. \( 4.3 \quad \) Determine the value of the SMALLEST term in this pattern.

Ask by Carter Joseph. in South Africa
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**4.1** The next term in the pattern is **-120**. **4.2** The \(n^{\text{th}}\) term is \( a_n = 3n^2 - 78n + 144 \). **4.3** The smallest term in the pattern is **-363**.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Extra Insights

To uncover the next term in the quadratic number pattern \( 69 ; 0-63 ; \ldots \), let’s first analyze the differences between the terms. The first term is 69 and the second term brings us to \( 0-63 = -63 \). The difference between these terms is \( -63 - 69 = -132 \). Keeping this progression and assuming it's quadratic, the next difference could also involve a similar subtraction. Hence, the next term could be: \[ -63 - 132 = -195. \] So the next term is potentially \(-195\). Now, to calculate an expression for the nth term of this pattern, we can use the general form of a quadratic equation: \[ a_n = an^2 + bn + c. \] From the terms identified, we see that we're dealing with points (1, 69), (2, -63). With this information, we can set up equations to find coefficients \(a\), \(b\), and \(c\). Assuming \(a\) captures the leading coefficient and simplifying, could lead us to guess \(a_n = -66n^2 + 138n - 3\) (after solving for constants using process like substitution or elimination based on known terms). Hence, inputting \(n\) will yield any specific term desired in the series. Finally, for determining the smallest term in the pattern, we could find the vertex of our quadratic or evaluate values derived from \(a_n\) evaluated at integers until a minimum is observed. Given the established quadratic nature, one can hypothesize that the minimum occurs at \(n = 2\). Evaluating, we see \(a_2 = -63\), and onward, as \(n\) increases, the output grows quadratic, confirming that the smallest term is indeed \(-63\). And bingo! You've unlocked the mystery of this quadratic pattern with its twists and turns!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad