Pregunta
upstudy study bank question image url

Check My Work (2 remaining) Suppose that at a price of \( \$ 30 \) per month, there are 30,000 subscribers to Small Town Streaming Service. If Small Town Streaming Service raises its price to \( \$ 40 \) per month, the number of subscribers will fall to 20,000 . Using the midpoint method for calculating the elasticity, what is the price elasticity of demand for this company's streaming service? a. 0.75 b. 0.66 c. 2.0 d. 1.4 e. 1.0

Ask by Haynes Klein. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The price elasticity of demand is 1.4.

Solución

To calculate the **price elasticity of demand** using the **midpoint method**, follow these steps: ### Given: - **Initial price (\( P_1 \))**: \$30 per month - **Initial quantity (\( Q_1 \))**: 30,000 subscribers - **New price (\( P_2 \))**: \$40 per month - **New quantity (\( Q_2 \))**: 20,000 subscribers ### Step 1: Calculate the Change in Quantity and Price \[ \Delta Q = Q_2 - Q_1 = 20,000 - 30,000 = -10,000 \] \[ \Delta P = P_2 - P_1 = 40 - 30 = 10 \] ### Step 2: Calculate the Midpoints \[ \text{Average Quantity} = \frac{Q_1 + Q_2}{2} = \frac{30,000 + 20,000}{2} = 25,000 \] \[ \text{Average Price} = \frac{P_1 + P_2}{2} = \frac{30 + 40}{2} = 35 \] ### Step 3: Apply the Midpoint Formula for Elasticity \[ \text{Elasticity} (E) = \frac{\frac{\Delta Q}{\text{Average Quantity}}}{\frac{\Delta P}{\text{Average Price}}} \] \[ E = \frac{\frac{-10,000}{25,000}}{\frac{10}{35}} = \frac{-0.4}{0.2857} \approx -1.4 \] ### Interpretation: The **absolute value** of the elasticity is **1.4**, indicating that the demand is **elastic**. This means that the quantity demanded is relatively responsive to price changes. ### **Answer:** **d. 1.4**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To calculate the price elasticity of demand using the midpoint method, you can use the formula: \[ E_d = \frac{(Q_2 - Q_1)}{(Q_2 + Q_1)/2} \div \frac{(P_2 - P_1)}{(P_2 + P_1)/2} \] Where: - \( Q_1 = 30,000 \) (initial quantity) - \( Q_2 = 20,000 \) (new quantity) - \( P_1 = 30 \) (initial price) - \( P_2 = 40 \) (new price) Plugging in the values: 1. Calculate the change in quantity and average quantity: \[ Q_2 - Q_1 = 20,000 - 30,000 = -10,000 \] \[ \frac{Q_2 + Q_1}{2} = \frac{20,000 + 30,000}{2} = 25,000 \] 2. Calculate the change in price and average price: \[ P_2 - P_1 = 40 - 30 = 10 \] \[ \frac{P_2 + P_1}{2} = \frac{40 + 30}{2} = 35 \] 3. Now substitute these values into the elasticity formula: \[ E_d = \frac{-10,000 / 25,000}{10 / 35} = \frac{-0.4}{0.2857} \approx -1.4 \] The absolute value of elasticity is typically used, so the elasticity of demand is approximately 1.4. Thus, the correct answer is **d. 1.4**.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad