Simplify \( 8 x^{-1} \) A \( \frac{8}{x} \) B \( \frac{1}{8 x} \) c \( -8 x \) D \( -\frac{1}{8 x} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
When you see \( 8 x^{-1} \), you can use the property of exponents that states \( x^{-1} = \frac{1}{x} \). Therefore, the expression simplifies to \( 8 \cdot \frac{1}{x} \), which is the same as \( \frac{8}{x} \). So, the correct answer is A \( \frac{8}{x} \). The beauty of negative exponents is that they remind us of the power of division! Whenever you encounter a negative exponent, simply flip it to find its positive counterpart. In this case, we learned that \( x^{-1} \) really just gives you a wonderful way to express something as a fraction, making it easier to work with in equations or when combining terms!