Pregunta
upstudy study bank question image url

\( \log _ { b } x ^ { r } = r \log _ { b } x \)

Ask by Morgan Young. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation \( \log_{b} x^{r} = r \log_{b} x \) is always true because it follows the power rule of logarithms, which states that \( \log_{b} x^{r} = r \cdot \log_{b} x \).

Solución

The equation \( \log_{b} x^{r} = r \log_{b} x \) is a property of logarithms. This property states that the logarithm of a power can be expressed as the exponent multiplied by the logarithm of the base. Let's break it down step by step: 1. **Understanding the Left Side**: - The left side of the equation is \( \log_{b} x^{r} \). This means we are taking the logarithm of \( x^{r} \) with base \( b \). 2. **Using the Power Rule of Logarithms**: - The power rule states that \( \log_{b} (a^{c}) = c \cdot \log_{b} a \). - Applying this rule to the left side, we get: \[ \log_{b} x^{r} = r \cdot \log_{b} x \] 3. **Comparing Both Sides**: - Now, we can see that both sides of the equation are equal: \[ r \cdot \log_{b} x = r \cdot \log_{b} x \] Thus, the equation \( \log_{b} x^{r} = r \log_{b} x \) is indeed true and is a direct application of the power rule of logarithms. If you have any specific questions or need further clarification on this topic, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Did you know that logarithmic properties have their roots in the study of exponential growth? The concept emerged during the 16th century as mathematicians sought to simplify complex calculations, especially in navigation and astronomy. Logarithms turned multiplication into addition, which was a game-changer before calculators! In real-world applications, logarithms are everywhere! From measuring the intensity of earthquakes on the Richter scale to determining pH levels in chemistry, logarithmic scales help us make sense of vast differences. For instance, every unit increase in pH represents a tenfold decrease in acidity, showcasing how logarithms can transform our understanding of natural phenomena.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad