Responder
The maturity value of the original note is $25,604.17.
Solución
To find the maturity value of the original note that Roger loaned to Rafael, we can use the formula for simple interest:
\[
I = P \times r \times t
\]
where:
- \( I \) is the interest,
- \( P \) is the principal amount (the initial loan),
- \( r \) is the interest rate (as a decimal),
- \( t \) is the time in years.
### Step 1: Calculate the interest
1. **Principal Amount (\( P \))**: \( 25,000 \)
2. **Interest Rate (\( r \))**: \( 7.25\% = 0.0725 \)
3. **Time (\( t \))**: \( 120 \) days, which is \( \frac{120}{360} \) years (using a 360-day year for simplicity in financial calculations).
Now, we can calculate the interest:
\[
t = \frac{120}{360} = \frac{1}{3} \text{ years}
\]
Now substituting the values into the interest formula:
\[
I = 25000 \times 0.0725 \times \frac{1}{3}
\]
### Step 2: Calculate the maturity value
The maturity value (\( MV \)) is given by:
\[
MV = P + I
\]
Now, let's calculate the interest and then the maturity value.
I'll perform the calculations now.
Calculate the value by following steps:
- step0: Calculate:
\(25000\times 0.0725\left(\frac{120}{360}\right)\)
- step1: Reduce the fraction:
\(25000\times 0.0725\times \frac{1}{3}\)
- step2: Multiply the terms:
\(1812.5\times \frac{1}{3}\)
- step3: Convert the expressions:
\(\frac{3625}{2}\times \frac{1}{3}\)
- step4: Multiply the numbers:
\(\frac{3625}{6}\)
Calculate or simplify the expression \( 25000 + (25000 * 0.0725 * (120/360)) \).
Calculate the value by following steps:
- step0: Calculate:
\(25000+\left(25000\times 0.0725\left(\frac{120}{360}\right)\right)\)
- step1: Reduce the fraction:
\(25000+\left(25000\times 0.0725\times \frac{1}{3}\right)\)
- step2: Multiply the terms:
\(25000+\frac{3625}{6}\)
- step3: Reduce fractions to a common denominator:
\(\frac{25000\times 6}{6}+\frac{3625}{6}\)
- step4: Transform the expression:
\(\frac{25000\times 6+3625}{6}\)
- step5: Multiply the numbers:
\(\frac{150000+3625}{6}\)
- step6: Add the numbers:
\(\frac{153625}{6}\)
### Step 1: Calculate the Interest
The interest calculated is:
\[
I = 25000 \times 0.0725 \times \frac{120}{360} = 604.1667 \text{ (approximately)}
\]
### Step 2: Calculate the Maturity Value
Now, we can find the maturity value:
\[
MV = 25000 + 604.1667 = 25604.1667 \text{ (approximately)}
\]
### Final Answer
The maturity value of the original note is approximately:
\[
\text{Maturity Value} \approx 25604.17
\]
Thus, the maturity value of the original note is **$25,604.17**.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución