Pregunta
upstudy study bank question image url

\begin{tabular}{l} Secondary Sales: The Bond Market \\ Roger loaned Rafael \( \$ 25,000 \) for 120 days at \( 7.25 \% \) simple interest. \\ 30 days later he sold the note to Novak, at an \( 8.25 \% \) simple discount \\ rate. \\ numeric. 1 point \\ What was the maturity value of the original note? \\ Type your answer... \\ \hline\end{tabular}

Ask by Black Newton. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The maturity value of the original note is $25,604.17.

Solución

To find the maturity value of the original note that Roger loaned to Rafael, we can use the formula for simple interest: \[ I = P \times r \times t \] where: - \( I \) is the interest, - \( P \) is the principal amount (the initial loan), - \( r \) is the interest rate (as a decimal), - \( t \) is the time in years. ### Step 1: Calculate the interest 1. **Principal Amount (\( P \))**: \( 25,000 \) 2. **Interest Rate (\( r \))**: \( 7.25\% = 0.0725 \) 3. **Time (\( t \))**: \( 120 \) days, which is \( \frac{120}{360} \) years (using a 360-day year for simplicity in financial calculations). Now, we can calculate the interest: \[ t = \frac{120}{360} = \frac{1}{3} \text{ years} \] Now substituting the values into the interest formula: \[ I = 25000 \times 0.0725 \times \frac{1}{3} \] ### Step 2: Calculate the maturity value The maturity value (\( MV \)) is given by: \[ MV = P + I \] Now, let's calculate the interest and then the maturity value. I'll perform the calculations now. Calculate the value by following steps: - step0: Calculate: \(25000\times 0.0725\left(\frac{120}{360}\right)\) - step1: Reduce the fraction: \(25000\times 0.0725\times \frac{1}{3}\) - step2: Multiply the terms: \(1812.5\times \frac{1}{3}\) - step3: Convert the expressions: \(\frac{3625}{2}\times \frac{1}{3}\) - step4: Multiply the numbers: \(\frac{3625}{6}\) Calculate or simplify the expression \( 25000 + (25000 * 0.0725 * (120/360)) \). Calculate the value by following steps: - step0: Calculate: \(25000+\left(25000\times 0.0725\left(\frac{120}{360}\right)\right)\) - step1: Reduce the fraction: \(25000+\left(25000\times 0.0725\times \frac{1}{3}\right)\) - step2: Multiply the terms: \(25000+\frac{3625}{6}\) - step3: Reduce fractions to a common denominator: \(\frac{25000\times 6}{6}+\frac{3625}{6}\) - step4: Transform the expression: \(\frac{25000\times 6+3625}{6}\) - step5: Multiply the numbers: \(\frac{150000+3625}{6}\) - step6: Add the numbers: \(\frac{153625}{6}\) ### Step 1: Calculate the Interest The interest calculated is: \[ I = 25000 \times 0.0725 \times \frac{120}{360} = 604.1667 \text{ (approximately)} \] ### Step 2: Calculate the Maturity Value Now, we can find the maturity value: \[ MV = 25000 + 604.1667 = 25604.1667 \text{ (approximately)} \] ### Final Answer The maturity value of the original note is approximately: \[ \text{Maturity Value} \approx 25604.17 \] Thus, the maturity value of the original note is **$25,604.17**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To calculate the maturity value of the original note that Roger loaned to Rafael, we first need to find the interest earned on the loan using the simple interest formula: \[ \text{Interest} = P \times r \times t \] Where: - \( P \) = principal amount (\$25,000) - \( r \) = interest rate (7.25% or 0.0725) - \( t \) = time in years (120 days = 120/365 years) Calculating the interest: \[ \text{Interest} = 25000 \times 0.0725 \times \frac{120}{365} \] \[ \text{Interest} = 25000 \times 0.0725 \times 0.32876 \approx 25000 \times 0.0238 \approx 595.28 \] Now, adding the interest to the principal to find the maturity value: \[ \text{Maturity Value} = P + \text{Interest}= 25000 + 595.28 \approx 25595.28 \] Thus, the maturity value of the original note was approximately \$25,595.28.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad