Pregunta
upstudy study bank question image url

1. Consider the two independent rolls of a fair 6 -sided dice. What is the probability of getting at least one 6 given the two rolls land on different numbers?

Ask by Vaughan Bradley. in Pakistan
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability of getting at least one 6, given that the two rolls are different, is 1⁄3.

Solución

To determine the probability of getting **at least one 6** given that the **two rolls land on different numbers**, we'll use conditional probability. ### Definitions: - **Event A**: At least one of the two rolls is a 6. - **Event B**: The two rolls land on different numbers. We need to compute \( P(A \mid B) \), which is the probability of **Event A** occurring given that **Event B** has occurred. The formula for conditional probability is: \[ P(A \mid B) = \frac{P(A \cap B)}{P(B)} \] ### Step 1: Calculate \( P(B) \) - Probability that the two rolls are different. - **Total possible outcomes** when rolling two 6-sided dice: \( 6 \times 6 = 36 \). - **Favorable outcomes for different numbers**: Total outcomes minus the outcomes where both dice show the same number. There are 6 outcomes where both dice show the same number (e.g., (1,1), (2,2), ..., (6,6)). \[ P(B) = \frac{36 - 6}{36} = \frac{30}{36} = \frac{5}{6} \] ### Step 2: Calculate \( P(A \cap B) \) - Probability that at least one 6 occurs and the two rolls are different. - **Cases where at least one 6 occurs and the numbers are different**: 1. First die is 6 and the second die is not 6: \( 5 \) outcomes. 2. Second die is 6 and the first die is not 6: \( 5 \) outcomes. \[ P(A \cap B) = \frac{5 + 5}{36} = \frac{10}{36} = \frac{5}{18} \] ### Step 3: Compute the Conditional Probability \( P(A \mid B) \). \[ P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{5}{18}}{\frac{5}{6}} = \frac{5}{18} \times \frac{6}{5} = \frac{1}{3} \] ### Final Answer: The probability is **1⁄3**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve this problem, we first determine the total number of outcomes when rolling two 6-sided dice. There are 36 possible outcomes (6 sides on the first die multiplied by 6 sides on the second). However, we only want the cases where the dice show different numbers. There are 6 choices for the first die and 5 for the second die (to ensure it's different), giving us 30 pairs. Next, we find the cases where at least one die shows a 6. The possible outcomes where they differ and at least one die is a 6 are (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (1, 6), (2, 6), (3, 6), (4, 6), and (5, 6). That's a total of 10 favorable outcomes. Thus, the probability of getting at least one 6, given that the two rolls are different, is the number of favorable outcomes divided by the total different outcomes: \( P(\text{at least one 6 | different}) = \frac{10}{30} = \frac{1}{3}. \) So, the probability is \( \frac{1}{3} \).

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad