Pregunta
upstudy study bank question image url

Determine if the given relation \( x=1 \cdot y^{2}+4 \) is symmetrical to the \( x \)-axis, \( y \)-axis, the origin, or none. origin symmetry \( x \)-axis symmetry \( y \)-axis symmetry none

Ask by Hamilton Kelly. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The relation is symmetric about the \( x \)-axis.

Solución

To determine the symmetry of the relation \( x = y^{2} + 4 \), let's analyze it with respect to the three types of symmetries: \( y \)-axis, \( x \)-axis, and the origin. 1. **\( y \)-Axis Symmetry:** - **Test:** Replace \( x \) with \( -x \) in the equation. - **Result:** \( -x = y^{2} + 4 \) - **Conclusion:** This is not equivalent to the original equation \( x = y^{2} + 4 \). Therefore, the relation **does not** have \( y \)-axis symmetry. 2. **\( x \)-Axis Symmetry:** - **Test:** Replace \( y \) with \( -y \) in the equation. - **Result:** \( x = (-y)^{2} + 4 \) simplifies to \( x = y^{2} + 4 \) - **Conclusion:** This is identical to the original equation. Therefore, the relation **does** have \( x \)-axis symmetry. 3. **Origin Symmetry:** - **Test:** Replace \( x \) with \( -x \) and \( y \) with \( -y \) in the equation. - **Result:** \( -x = (-y)^{2} + 4 \) simplifies to \( -x = y^{2} + 4 \) - **Conclusion:** This is not equivalent to the original equation \( x = y^{2} + 4 \). Therefore, the relation **does not** have origin symmetry. **Final Answer:** The relation is symmetric about the \( x \)-axis.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To check for axis and origin symmetry, we apply specific transformations to the relation \( x = 1 \cdot y^{2} + 4 \). For \( x \)-axis symmetry, we replace \( y \) with \( -y \) and evaluate: \[ x = 1 \cdot (-y)^{2} + 4 \Rightarrow x = 1 \cdot y^{2} + 4 \] This retains the same equation, indicating that the relation is symmetric with respect to the \( x \)-axis. For \( y \)-axis symmetry, we replace \( x \) with \( -x \): \[ -x = 1 \cdot y^{2} + 4 \] This does not yield the same equation, so there is no symmetry with respect to the \( y \)-axis. For origin symmetry, we replace \( x \) with \( -x \) and \( y \) with \( -y \): \[ -x = 1 \cdot (-y)^{2} + 4 \Rightarrow -x = 1 \cdot y^{2} + 4 \] This also does not lead to the same equation, indicating that there is no symmetry with respect to the origin. In summary, the relation is symmetric with respect to the \( x \)-axis only.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad