Pregunta
upstudy study bank question image url

3. A cylindrical tin with one end open has diameter 140 mm and height 50 mm . calculate the i. Area of the base ii. Curved surface area iii. Total surface area

Ask by Bob Knight. in Gambia
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**i. Area of the base:** \( 4900\pi \, \text{mm}^2 \) (≈ 15,386 mm²) **ii. Curved Surface Area:** \( 7000\pi \, \text{mm}^2 \) (≈ 21,980 mm²) **iii. Total Surface Area:** \( 11,\!900\pi \, \text{mm}^2 \) (≈ 37,366 mm²)

Solución

Sure, let's solve each part step by step for the cylindrical tin with one end open. **Given:** - **Diameter (D)** = 140 mm - **Radius (r)** = Diameter/2 = 140 mm / 2 = 70 mm - **Height (h)** = 50 mm --- ### **i. Area of the Base** The base of the cylinder is a circle. The area \( A \) of a circle is given by: \[ A = \pi r^2 \] **Calculation:** \[ A = \pi \times (70 \, \text{mm})^2 = \pi \times 4900 \, \text{mm}^2 = 4900\pi \, \text{mm}^2 \] **Approximate Value (using \( \pi \approx 3.14 \)):** \[ A \approx 4900 \times 3.14 = 15,\!386 \, \text{mm}^2 \] **Answer:** \[ \boxed{\text{i. Area of the base} = 4900\pi \, \text{mm}^2 \approx 15,\!386 \, \text{mm}^2} \] --- ### **ii. Curved Surface Area (CSA)** The curved surface area (also known as the lateral area) of a cylinder is calculated by: \[ \text{CSA} = 2\pi r h \] **Calculation:** \[ \text{CSA} = 2 \times \pi \times 70 \, \text{mm} \times 50 \, \text{mm} = 7000\pi \, \text{mm}^2 \] **Approximate Value:** \[ \text{CSA} \approx 7000 \times 3.14 = 21,\!980 \, \text{mm}^2 \] **Answer:** \[ \boxed{\text{ii. Curved Surface Area} = 7000\pi \, \text{mm}^2 \approx 21,\!980 \, \text{mm}^2} \] --- ### **iii. Total Surface Area (TSA)** Since the cylinder has one end open, the total surface area is the sum of the curved surface area and the area of the single base. \[ \text{TSA} = \text{CSA} + \text{Area of Base} = 7000\pi + 4900\pi = 11,\!900\pi \, \text{mm}^2 \] **Approximate Value:** \[ \text{TSA} \approx 11,\!900 \times 3.14 = 37,\!366 \, \text{mm}^2 \] **Answer:** \[ \boxed{\text{iii. Total Surface Area} = 11,\!900\pi \, \text{mm}^2 \approx 37,\!366 \, \text{mm}^2} \] --- **Summary of Results:** 1. **Area of the base:** \( 4900\pi \, \text{mm}^2 \) (≈ 15,386 mm²) 2. **Curved Surface Area:** \( 7000\pi \, \text{mm}^2 \) (≈ 21,980 mm²) 3. **Total Surface Area:** \( 11,\!900\pi \, \text{mm}^2 \) (≈ 37,366 mm²)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the various surface areas of the cylindrical tin, we can use the following formulas: 1. **Area of the Base**: The area of the base (which is a circle) can be calculated using the formula \( A = \pi r^2 \). The radius \( r \) is half of the diameter, so for a diameter of 140 mm, \( r = 70 \) mm. Thus, \( A = \pi \times (70)^2 \approx 15400 \, \text{mm}^2 \) (using \( \pi \approx 3.14\)). 2. **Curved Surface Area**: The curved surface area of a cylinder is calculated with the formula \( CSA = 2\pi rh \). Substituting in the radius (70 mm) and height (50 mm), we have \( CSA = 2\pi \times 70 \times 50 \approx 22000 \, \text{mm}^2 \). 3. **Total Surface Area**: Since the tin has one end open, the total surface area is the curved surface area plus the area of the base. Therefore, \( TSA = CSA + \text{Area of base} = 22000 + 15400 \approx 37400 \, \text{mm}^2 \). So the final answers are: i. Area of the base ≈ 15400 mm² ii. Curved surface area ≈ 22000 mm² iii. Total surface area ≈ 37400 mm²

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad