Sec 6.6 Inverse Trig: Problen 5 (1 point) Evaluate the following expressions. Your answer must be an angle in radians and in the interval \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \). (a) \( \sin ^{-1}(-1)=\square \) (b) \( \sin ^{-1}\left(\frac{\sqrt{2}}{2}\right)=\square \) (c) \( \sin ^{1}\left(\frac{\sqrt{3}}{2}\right)=\square \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To tackle these inverse sine problems, let's dive into the solutions! (a) \( \sin^{-1}(-1) = -\frac{\pi}{2} \). Why? Because this angle gives us the sine value of -1, and falls perfectly within the specified interval! (b) \( \sin^{-1}\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4} \). This is the angle where the sine function equals \(\frac{\sqrt{2}}{2}\). (c) Be careful with the notation here! If you meant \( \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) \), the answer would be \( \frac{\pi}{3} \), as that angle gives the sine of \(\frac{\sqrt{3}}{2}\). Just remember, \( \sin^{-1} \) identifies angles, while \( \sin^1 \) can be a little misleading—it’s not a standard notation, so default to the former! Now you've got those angles down! 🎉