Pregunta
upstudy study bank question image url

What are the vertical and horizontal asymptotes of the rational function \( f(x)=\frac{2 x^{2}-1}{x^{2}-16} ? \)

Ask by Cole Macdonald. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Vertical asymptotes at \( x = 4 \) and \( x = -4 \), and a horizontal asymptote at \( y = 2 \).

Solución

To determine the vertical and horizontal asymptotes of the rational function \( f(x) = \frac{2x^{2} - 1}{x^{2} - 16} \), follow these steps: ### 1. **Vertical Asymptotes** Vertical asymptotes occur where the denominator is zero, provided the numerator is not also zero at those points. **Step-by-Step:** - **Set the denominator equal to zero:** \[ x^{2} - 16 = 0 \implies x^{2} = 16 \implies x = \pm 4 \] - **Check the numerator at these values:** \[ f(4) = \frac{2(4)^2 - 1}{4^2 - 16} = \frac{32 - 1}{16 - 16} = \frac{31}{0} \quad (\text{undefined}) \] \[ f(-4) = \frac{2(-4)^2 - 1}{(-4)^2 - 16} = \frac{32 - 1}{16 - 16} = \frac{31}{0} \quad (\text{undefined}) \] Since the numerator is not zero at \( x = 4 \) and \( x = -4 \), these are indeed vertical asymptotes. **Vertical Asymptotes:** \[ x = 4 \quad \text{and} \quad x = -4 \] ### 2. **Horizontal Asymptote** Horizontal asymptotes are determined by comparing the degrees of the numerator and the denominator. - **Degrees of the polynomials:** - Numerator: Degree 2 - Denominator: Degree 2 Since the degrees are the same, the horizontal asymptote is the ratio of the leading coefficients. **Step-by-Step:** - **Leading coefficient of the numerator:** 2 - **Leading coefficient of the denominator:** 1 **Horizontal Asymptote:** \[ y = \frac{2}{1} = 2 \] ### **Summary** - **Vertical Asymptotes:** \( x = 4 \) and \( x = -4 \) - **Horizontal Asymptote:** \( y = 2 \) **Graphical Representation:** ![Graph of f(x) = (2x² - 1)/(x² - 16) with vertical asymptotes at x = 4 and x = -4, and horizontal asymptote at y = 2](https://i.imgur.com/your-image.png) *(Note: Replace the image link with an actual graph if needed.)* **Final Answer:** Vertical asymptotes at x = 4 and x = –4, and a horizontal asymptote of y = 2.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the vertical asymptotes of the function \( f(x)=\frac{2 x^{2}-1}{x^{2}-16} \), we need to set the denominator equal to zero. Thus, solving \( x^{2}-16=0 \) gives us \( x^{2}=16 \), leading to \( x=4 \) and \( x=-4 \). Therefore, the vertical asymptotes are located at \( x=4 \) and \( x=-4 \). For the horizontal asymptote, we look at the degrees of the numerator and the denominator. Both the numerator and the denominator are quadratic functions (degree 2). To find the horizontal asymptote, we take the ratio of the leading coefficients: \(\frac{2}{1}=2\). Thus, the horizontal asymptote is \( y=2 \).

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad