Responder
Vertical asymptotes at \( x = 4 \) and \( x = -4 \), and a horizontal asymptote at \( y = 2 \).
Solución
To determine the vertical and horizontal asymptotes of the rational function \( f(x) = \frac{2x^{2} - 1}{x^{2} - 16} \), follow these steps:
### 1. **Vertical Asymptotes**
Vertical asymptotes occur where the denominator is zero, provided the numerator is not also zero at those points.
**Step-by-Step:**
- **Set the denominator equal to zero:**
\[
x^{2} - 16 = 0 \implies x^{2} = 16 \implies x = \pm 4
\]
- **Check the numerator at these values:**
\[
f(4) = \frac{2(4)^2 - 1}{4^2 - 16} = \frac{32 - 1}{16 - 16} = \frac{31}{0} \quad (\text{undefined})
\]
\[
f(-4) = \frac{2(-4)^2 - 1}{(-4)^2 - 16} = \frac{32 - 1}{16 - 16} = \frac{31}{0} \quad (\text{undefined})
\]
Since the numerator is not zero at \( x = 4 \) and \( x = -4 \), these are indeed vertical asymptotes.
**Vertical Asymptotes:**
\[
x = 4 \quad \text{and} \quad x = -4
\]
### 2. **Horizontal Asymptote**
Horizontal asymptotes are determined by comparing the degrees of the numerator and the denominator.
- **Degrees of the polynomials:**
- Numerator: Degree 2
- Denominator: Degree 2
Since the degrees are the same, the horizontal asymptote is the ratio of the leading coefficients.
**Step-by-Step:**
- **Leading coefficient of the numerator:** 2
- **Leading coefficient of the denominator:** 1
**Horizontal Asymptote:**
\[
y = \frac{2}{1} = 2
\]
### **Summary**
- **Vertical Asymptotes:** \( x = 4 \) and \( x = -4 \)
- **Horizontal Asymptote:** \( y = 2 \)
**Graphical Representation:**
![Graph of f(x) = (2x² - 1)/(x² - 16) with vertical asymptotes at x = 4 and x = -4, and horizontal asymptote at y = 2](https://i.imgur.com/your-image.png)
*(Note: Replace the image link with an actual graph if needed.)*
**Final Answer:**
Vertical asymptotes at x = 4 and x = –4, and a horizontal asymptote of y = 2.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución