Find the general solution of the given equation. \( y^{\prime \prime}-2 y^{\prime}-3 y=0 \) Choose the correct solution below. \( c_{1} \) and \( c_{2} \) are arbitrary constants. A. \( y=c_{1} e^{x}+c_{2} e^{-3 x} \) B. \( y=c_{1} \cos (-x)+c_{2} \sin (3 x) \) C. \( y=c_{1} e^{-x}+c_{2} e^{3 x} \) D. \( y=c_{1} e^{-x}+c_{2} x e^{-x} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To solve the differential equation \( y^{\prime \prime} - 2 y^{\prime} - 3 y = 0 \), we start by finding the characteristic equation, which is \( r^2 - 2r - 3 = 0 \). Factoring this, we get \( (r - 3)(r + 1) = 0 \), leading to the roots \( r_1 = 3 \) and \( r_2 = -1 \). Therefore, the general solution to the equation can be expressed as: \[ y = c_{1} e^{3x} + c_{2} e^{-x} \] This means the solution that best matches our form is not directly in your provided options, but correct it would be: So we choose the closest simplified form: C. \( y = c_{1} e^{-x} + c_{2} e^{3x} \)