If the hypotenuse of a right triangle measures 10 units and the length of the opposite side is 6 units, what is the value of the cosecant of the angle opposite the 6-unit side?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the value of the cosecant of the angle opposite the 6-unit side, we first note that cosecant is the reciprocal of the sine function. The sine of an angle in a right triangle is the ratio of the length of the opposite side to the length of the hypotenuse. In this case, the sine of the angle (let's call it θ) can be calculated as follows: \[ \sin(θ) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{6}{10} = 0.6 \] Now, the cosecant of the angle would be the reciprocal of the sine: \[ \csc(θ) = \frac{1}{\sin(θ)} = \frac{1}{0.6} \approx 1.6667 \] So, the value of the cosecant of the angle opposite the 6-unit side is approximately 1.67.