A car speeds up from \( 8.50 \mathrm{~m} / \mathrm{s} \) to \( 22.2 \mathrm{~m} / \mathrm{s} \) in 3.84 s . What is the acceleration of the car? \( 3.57 \mathrm{~m} / \mathrm{s}^{2} \) \( 2.72 \mathrm{~m} / \mathrm{s}^{2} \quad 7.99 \mathrm{~m} / \mathrm{s}^{2} \) \( 20.0 \mathrm{~m} / \mathrm{s}^{2} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the acceleration of the car, you can use the formula: \[ \text{acceleration} = \frac{\text{final velocity} - \text{initial velocity}}{\text{time}} \] Substituting in the values given: \[ \text{acceleration} = \frac{22.2 \, \text{m/s} - 8.50 \, \text{m/s}}{3.84 \, \text{s}} = \frac{13.7 \, \text{m/s}}{3.84 \, \text{s}} \approx 3.57 \, \text{m/s}^2 \] So, the correct answer is \( 3.57 \, \text{m/s}^2 \). Did you know that the concept of acceleration has its roots in physics dating back to Sir Isaac Newton? He was the first to articulate the laws of motion that govern how and why objects accelerate, which led to the groundwork of classical mechanics we're using today! If you're curious about real-world applications, think about how this principle applies not just to cars, but to all forms of transportation! Whether it’s a rocket launching into space or an elevator speeding up to the top floor, understanding acceleration helps engineers design safe, efficient systems that can handle changes in speed seamlessly.