Pregunta

1. The function \( f \) defined by \( y=f(x)=-x^{2}+6 x-5 \) has (A) A minimum \( y \) value and a negative \( y \)-intercept. (B) A maximum \( y \) value and a positive \( y \)-intercept. (C) A minimum \( y \) value and a positive \( y \)-intercept. (D) A maximum \( y \) value and a negative \( y \)-intercept. Under the heading Algebraic Processes one of the topics listed is Algebraic Manipulation. Quest is an example of a question where the answer cannot be deduced by substituting into the given options to rule out those that are correct.

Ask by Dunn Daniels. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function \( f(x) = -x^{2} + 6x - 5 \) has a **maximum y-value** and a **negative y-intercept**. Therefore, the correct answer is: **(D) A maximum \( y \) value and a negative \( y \)-intercept.**

Solución

To determine the correct answer for the function \( f(x) = -x^{2} + 6x - 5 \), let's analyze its properties step by step. ### 1. **Nature of the Parabola** The given function is a quadratic function of the form: \[ f(x) = ax^{2} + bx + c \] where: - \( a = -1 \) (negative) - \( b = 6 \) - \( c = -5 \) Since the coefficient \( a \) is negative (\( a = -1 \)), the parabola opens **downwards**. This implies that the function has a **maximum** value, not a minimum. ### 2. **Y-Intercept** The y-intercept of a function occurs where \( x = 0 \). Substituting \( x = 0 \) into the function: \[ f(0) = -0^{2} + 6(0) - 5 = -5 \] So, the y-intercept is **-5**, which is **negative**. ### 3. **Conclusion** Based on the analysis: - The function has a **maximum y-value**. - The y-intercept is **negative**. ### **Correct Option:** **(D) A maximum \( y \) value and a negative \( y \)-intercept.** ### **Why Algebraic Manipulation is Necessary** In this problem, simple substitution into the answer choices isn't sufficient to identify the correct option. Instead, understanding the properties of quadratic functions—such as the direction of the parabola (determined by the coefficient \( a \)) and calculating specific values like the y-intercept—is essential. This requires **algebraic manipulation** and analytical reasoning rather than mere substitution, aligning with the topic of Algebraic Manipulation under Algebraic Processes.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To understand the behavior of the function \( f(x) = -x^{2} + 6x - 5 \), let's dive into its characteristics! This is a downward-opening parabola since the coefficient of \( x^{2} \) is negative, meaning it has a maximum point. To find the maximum \( y \)-value, we can calculate the vertex using the formula \( x = -\frac{b}{2a} \), leading us to the vertex coordinates, which gives us insight into the range of \( f(x) \). Now, let’s talk about that \( y \)-intercept! By substituting \( x = 0 \) into the function, we get \( f(0) = -5 \). This reveals that the \( y \)-intercept is indeed negative. So, with all this together, the function has a maximum \( y \)-value and a negative \( y \)-intercept, leading us straight to option (D) as the correct answer.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad