Pregunta
upstudy study bank question image url

26. Find the derivative of the function, \( f(x)=3 x-8 \), using the definitio

Ask by Harper Summers. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The derivative of \( f(x) = 3x - 8 \) is \( f'(x) = 3 \).

Solución

To find the derivative of the function \( f(x) = 3x - 8 \) using the **definition of the derivative**, we'll follow these steps: ### Definition of the Derivative The derivative of a function \( f(x) \) at a point \( x \) is defined as: \[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \] ### Step-by-Step Calculation 1. **Compute \( f(x + h) \):** \[ f(x + h) = 3(x + h) - 8 = 3x + 3h - 8 \] 2. **Find the Difference \( f(x + h) - f(x) \):** \[ f(x + h) - f(x) = (3x + 3h - 8) - (3x - 8) = 3x + 3h - 8 - 3x + 8 = 3h \] 3. **Form the Difference Quotient:** \[ \frac{f(x + h) - f(x)}{h} = \frac{3h}{h} = 3 \] 4. **Take the Limit as \( h \to 0 \):** \[ f'(x) = \lim_{h \to 0} 3 = 3 \] ### Conclusion The derivative of the function \( f(x) = 3x - 8 \) is: \[ f'(x) = 3 \] ### Interpretation - **Constant Derivative:** Since \( f(x) \) is a linear function (a straight line), its slope is constant. The derivative \( f'(x) = 3 \) represents this constant slope. - **Geometric Meaning:** The slope of the line \( f(x) = 3x - 8 \) is 3, which means for every unit increase in \( x \), \( f(x) \) increases by 3 units. This result aligns with our expectation for linear functions, where the derivative is simply the coefficient of \( x \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the derivative of the function \( f(x) = 3x - 8 \) using the definition of the derivative, we apply the limit definition: \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] Substituting \( f(x) \): \[ f'(x) = \lim_{h \to 0} \frac{(3(x+h) - 8) - (3x - 8)}{h} \] \[ = \lim_{h \to 0} \frac{(3x + 3h - 8 - 3x + 8)}{h} = \lim_{h \to 0} \frac{3h}{h} \] \[ = \lim_{h \to 0} 3 = 3 \] Thus, the derivative \( f'(x) = 3 \). --- Learning about derivatives can be a journey back in time to the days of Sir Isaac Newton and Gottfried Wilhelm Leibniz, who independently developed calculus in the late 17th century. This mathematical tool became essential for analyzing changing systems, leading to discoveries in physics, engineering, and beyond! In real-life applications, derivatives are everywhere! They help in understanding rates of change—whether it’s how fast a car is accelerating, the steepness of a hill for a cyclist, or even how quickly your bank account grows with interest. Knowing how to compute derivatives can help you optimize performance, be it in business, sports, or technology!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad