Pregunta
upstudy study bank question image url

The solution of the differential equation \[ \frac{d^{2} y}{d t^{2}}-y=0 \text {, } \] subject to the boundary conditions \( y(0)=1 \) and \( y(\infty)=0 \), is

Ask by Clarke Watkins. in India
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution to the differential equation is \( y(t) = e^{-t} \).

Solución

To solve the differential equation \[ \frac{d^{2} y}{d t^{2}} - y = 0 \] with the boundary conditions \( y(0) = 1 \) and \( y(\infty) = 0 \), follow these steps: 1. **Find the General Solution:** The characteristic equation for the differential equation is: \[ r^2 - 1 = 0 \implies r = \pm 1 \] Therefore, the general solution is: \[ y(t) = A e^{t} + B e^{-t} \] 2. **Apply the Boundary Conditions:** - **First Boundary Condition (\( y(0) = 1 \)):** Substitute \( t = 0 \) into the general solution: \[ y(0) = A e^{0} + B e^{0} = A + B = 1 \quad \Rightarrow \quad A + B = 1 \quad \text{(1)} \] - **Second Boundary Condition (\( y(\infty) = 0 \)):** Examine the behavior of the solution as \( t \to \infty \): \[ y(t) = A e^{t} + B e^{-t} \] For \( y(t) \) to approach 0 as \( t \to \infty \), the term \( A e^{t} \) must not diverge to infinity. This requires \( A = 0 \). Substituting \( A = 0 \) into equation (1): \[ 0 + B = 1 \implies B = 1 \] 3. **Final Solution:** Substituting \( A = 0 \) and \( B = 1 \) back into the general solution: \[ y(t) = e^{-t} \] **Answer:** Its solution is the exponential function y (t ) = e⁻ᵗ

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

The given differential equation is a second-order linear homogeneous equation. The characteristic equation corresponding to it is \( r^2 - 1 = 0 \), which has solutions \( r = 1 \) and \( r = -1 \). Therefore, the general solution to the differential equation can be expressed as: \[ y(t) = A e^{t} + B e^{-t} \] Now, applying the first boundary condition \( y(0) = 1 \), we have: \[ A e^{0} + B e^{0} = A + B = 1 \] Next, to apply the second boundary condition \( y(\infty) = 0 \), it is important to analyze the behavior of the solution as \( t \) approaches infinity. The term \( A e^{t} \) will go to infinity unless \( A = 0 \). Therefore, we can conclude that \( A \) must be 0. Using \( A = 0 \) in the first condition: \[ 0 + B = 1 \implies B = 1 \] Thus, the solution simplifies to: \[ y(t) = e^{-t} \] This satisfies both boundary conditions \( y(0) = 1 \) and \( y(\infty) = 0 \). Hence, the final solution is: \[ \boxed{y(t) = e^{-t}} \]

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad