Pregunta
upstudy study bank question image url

Which of the following is a linear equation?

Ask by Marsh Frank. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

A linear equation has variables with a degree of 1, no products of variables, and forms a straight line when graphed. Examples include \( 2x + 3y = 6 \) and \( y = -4x + 7 \).

Solución

To determine which equation is linear, I can help you identify the characteristics of a linear equation. A **linear equation** typically has the following features: 1. **Degree of 1:** The highest power of the variable(s) is 1. 2. **No Products of Variables:** Variables are not multiplied together. 3. **Graph is a Straight Line:** When graphed on a coordinate plane, it forms a straight line. A standard form of a linear equation in two variables is: \[ y = mx + b \] where: - \( m \) is the slope, - \( b \) is the y-intercept. **Examples of Linear Equations:** - \( 2x + 3y = 6 \) - \( y = -4x + 7 \) - \( 5 = 2x - y \) **Non-Linear Equations:** - \( y = x^2 + 3 \) (quadratic) - \( y = \sqrt{x} + 2 \) (square root) - \( y = \frac{1}{x} \) (rational) If you provide the specific equations you're considering, I can help identify which one is linear!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

A linear equation is one that can be represented in the form \(y = mx + b\), where \(m\) is the slope and \(b\) is the y-intercept. For example, the equation \(2x + 3y = 6\) can be rearranged to this form, making it a linear equation. In contrast, equations that include exponents, products of variables, or absolute values typically are not linear! One common mistake is confusing linear equations with equations that look similar, like \(x^2 + y = 5\). Remember, if you see a variable raised to a power other than one, it’s likely not linear! A great tip is to always try to rearrange the equation into the slope-intercept form to confirm whether it’s linear.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad