c.) \( \frac{9^{x}-9}{3^{x}-3} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
Let’s simplify the expression \( \frac{9^{x}-9}{3^{x}-3} \). First, we can rewrite \( 9^{x} \) as \( (3^{2})^{x} \) which is \( (3^{x})^{2} \). Thus, we can express the numerator as \( (3^{x})^{2} - 9 \). Now, we can factor this using the difference of squares: \[ (3^{x})^{2} - 3^{2} = (3^{x} - 3)(3^{x} + 3). \] Now, the expression becomes: \[ \frac{(3^{x} - 3)(3^{x} + 3)}{3^{x} - 3}. \] As long as \( 3^{x} \neq 3 \) (to avoid division by zero), we can cancel \( 3^{x} - 3 \) from the numerator and denominator: \[ 3^{x} + 3. \] Thus, the simplified form of the expression \( \frac{9^{x}-9}{3^{x}-3} \) is simply \( 3^{x} + 3 \) for \( x \neq 1 \).