Which BEST describes the relationship between the lines with equations \( -4 x+2 y=-5 \) and \( -8 x+4 y=0 \) ? A. neither parallel nor perpendicular B. perpendicular C. parallel D. same line
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To understand the relationship between the two lines represented by the equations \( -4x + 2y = -5 \) and \( -8x + 4y = 0 \), let's put them in slope-intercept form (y = mx + b). The first line simplifies to \( y = 2x - \frac{5}{2} \) with a slope of 2. The second line rearranges to \( y = 2x \) with the same slope of 2. Since both lines have identical slopes, they are parallel. In mathematical terms, if two lines have the same slope but different y-intercepts, they will never meet, confirming they are parallel. Thus, the correct answer is C. parallel!