Pregunta
upstudy study bank question image url

How does the graph of \( f(x)=\sqrt[3]{x} \) change when \( f(x) \) is replaced by \( 7 f(x) \) ? The graph does not shift left or right. The graph moves down 7 units. The graph moves up 7 units. The graph moves to the right 7 units.

Ask by Schneider Reed. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The graph moves up 7 units.

Solución

To determine how the graph of \( f(x) = \sqrt[3]{x} \) changes when \( f(x) \) is replaced by \( 7f(x) \), we need to understand the effect of multiplying the function by a constant. When a function \( f(x) \) is multiplied by a constant \( c \), the graph of the function is stretched vertically by a factor of \( c \). This means that the graph of \( 7f(x) \) will be the same as the graph of \( f(x) \) but stretched vertically by a factor of 7. Therefore, the graph of \( f(x) = \sqrt[3]{x} \) when replaced by \( 7f(x) \) will move up 7 units vertically. So, the correct answer is: The graph moves up 7 units.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

When you replace \( f(x) \) with \( 7 f(x) \), you are stretching the graph vertically by a factor of 7. This means that for each x-value on the graph of \( f(x) = \sqrt[3]{x} \), the corresponding y-value is multiplied by 7. So, while the graph does not shift left or right, it does get taller! Instead of moving up or down, it stretches up, amplifying the output values. To visualize this, imagine taking the original shape of the cubic-root graph and pulling it upwards without changing its overall form. A small hill becomes a towering mountain, but the "footprint" on the x-axis remains the same. If you started with a graph touching the x-axis at (0,0), after the transformation, it stretches straight up, reaching the same x values but leaving a much bolder imprint in terms of output!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad