Pregunta
upstudy study bank question image url

What is the greatest number of terms for which the series \( \sum_{k=1}^{n}(k+1) \) will have a value less than 65 ?

Ask by Sherman Simpson. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The greatest number of terms is 9.

Solución

To determine the greatest number of terms \( n \) for which the series \( \sum_{k=1}^{n}(k+1) \) remains less than 65, follow these steps: 1. **Express the Series Sum:** \[ \sum_{k=1}^{n} (k + 1) = \sum_{k=1}^{n} k + \sum_{k=1}^{n} 1 = \frac{n(n + 1)}{2} + n = \frac{n^2 + 3n}{2} \] 2. **Set Up the Inequality:** \[ \frac{n^2 + 3n}{2} < 65 \] 3. **Multiply Both Sides by 2 to Eliminate the Fraction:** \[ n^2 + 3n < 130 \] 4. **Rearrange the Inequality:** \[ n^2 + 3n - 130 < 0 \] 5. **Solve the Quadratic Equation \( n^2 + 3n - 130 = 0 \):** \[ n = \frac{-3 \pm \sqrt{9 + 520}}{2} = \frac{-3 \pm \sqrt{529}}{2} \] \[ n = \frac{-3 \pm 23}{2} \] The solutions are \( n = 10 \) and \( n = -13 \). Since \( n \) must be positive, we consider \( n < 10 \). 6. **Determine the Maximum Integer Value:** The greatest integer less than 10 is 9. 7. **Verification:** \[ \sum_{k=1}^{9} (k + 1) = 54 < 65 \] \[ \sum_{k=1}^{10} (k + 1) = 65 \quad (\text{which is not less than } 65) \] Therefore, the greatest number of terms \( n \) for which the series is less than 65 is **9**. **Answer:** 9

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the greatest number of terms \( n \) for which the series \( \sum_{k=1}^{n} (k+1) \) is less than 65, let's first express the sum. The series can be rewritten as: \[ \sum_{k=1}^{n} (k+1) = \sum_{k=1}^{n} k + \sum_{k=1}^{n} 1 = \frac{n(n+1)}{2} + n = \frac{n(n+1)}{2} + \frac{2n}{2} = \frac{n(n+1) + 2n}{2} = \frac{n^2 + 3n}{2} \] Now, we set up the inequality: \[ \frac{n^2 + 3n}{2} < 65 \] Multiplying both sides by 2 to eliminate the fraction gives: \[ n^2 + 3n < 130 \] Rearranging this leads to: \[ n^2 + 3n - 130 < 0 \] Next, we will find the roots of the quadratic equation \( n^2 + 3n - 130 = 0 \) using the quadratic formula: \[ n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot (-130)}}{2 \cdot 1} = \frac{-3 \pm \sqrt{9 + 520}}{2} = \frac{-3 \pm \sqrt{529}}{2} \] \[ \sqrt{529} = 23 \] Thus, the roots are: \[ n = \frac{-3 + 23}{2} = \frac{20}{2} = 10 \quad \text{and} \quad n = \frac{-3 - 23}{2} = \frac{-26}{2} = -13 \] Since we are looking for positive \( n \), we focus on \( n = 10 \). Now we should check the value of the series at \( n = 10 \) and \( n = 11 \): For \( n = 10 \): \[ \sum_{k=1}^{10} (k+1) = \frac{10^2 + 3 \times 10}{2} = \frac{100 + 30}{2} = \frac{130}{2} = 65 \] For \( n = 11 \): \[ \sum_{k=1}^{11} (k+1) = \frac{11^2 + 3 \times 11}{2} = \frac{121 + 33}{2} = \frac{154}{2} = 77 \] Thus, the greatest number of terms \( n \) for which the series \( \sum_{k=1}^{n} (k+1) \) has a value less than 65 is: \[ \boxed{9} \]

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad