Pregunta
upstudy study bank question image url

13) \( 3 x^{2}-6 x-9 \)

Ask by Park Harper. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The quadratic expression \( 3x^{2} - 6x - 9 \) can be factored as \( 3(x - 3)(x + 1) \). Solving the equation \( 3x^{2} - 6x - 9 = 0 \) gives the solutions \( x = 3 \) and \( x = -1 \).

Solución

It looks like you've provided the quadratic expression: \[ 3x^{2} - 6x - 9 \] Depending on what you're looking to do with this expression, here are a few common approaches: ### 1. **Factoring the Expression** First, let's factor out the greatest common factor (GCF): \[ 3x^{2} - 6x - 9 = 3(x^{2} - 2x - 3) \] Now, factor the quadratic inside the parentheses: We need two numbers that multiply to **-3** (the constant term) and add up to **-2** (the coefficient of the middle term). The numbers **-3** and **+1** fit these requirements because: - \(-3 \times 1 = -3\) - \(-3 + 1 = -2\) So, the factored form is: \[ 3(x - 3)(x + 1) \] ### 2. **Solving the Equation \( 3x^{2} - 6x - 9 = 0 \)** If you're looking to solve the quadratic equation, here's how you can do it: **Step 1: Simplify the Equation** Divide the entire equation by the GCF, which is 3: \[ x^{2} - 2x - 3 = 0 \] **Step 2: Factor the Simplified Equation** As factored earlier: \[ (x - 3)(x + 1) = 0 \] **Step 3: Find the Solutions** Set each factor equal to zero and solve for \( x \): 1. \( x - 3 = 0 \) ⟹ \( x = 3 \) 2. \( x + 1 = 0 \) ⟹ \( x = -1 \) **Solutions:** \( x = 3 \) and \( x = -1 \) ### 3. **Using the Quadratic Formula** Alternatively, you can use the quadratic formula to find the roots of the equation: \[ ax^{2} + bx + c = 0 \] For the equation \( 3x^{2} - 6x - 9 = 0 \): - \( a = 3 \) - \( b = -6 \) - \( c = -9 \) The quadratic formula is: \[ x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \] Plugging in the values: \[ x = \frac{6 \pm \sqrt{(-6)^{2} - 4(3)(-9)}}{2(3)} \] \[ x = \frac{6 \pm \sqrt{36 + 108}}{6} \] \[ x = \frac{6 \pm \sqrt{144}}{6} \] \[ x = \frac{6 \pm 12}{6} \] So, the solutions are: 1. \( x = \frac{6 + 12}{6} = \frac{18}{6} = 3 \) 2. \( x = \frac{6 - 12}{6} = \frac{-6}{6} = -1 \) **Solutions:** \( x = 3 \) and \( x = -1 \) --- **Summary:** - **Factored Form:** \( 3(x - 3)(x + 1) \) - **Solutions to \( 3x^{2} - 6x - 9 = 0 \):** \( x = 3 \) and \( x = -1 \) If you had a different operation or question in mind regarding this expression, please let me know!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that quadratic equations like \( 3x^{2} - 6x - 9 \) can often represent real-world phenomena such as projectile motion or the trajectory of objects? By solving these equations, we can predict outcomes like how far an object will travel or how high it will go. So next time you’re throwing a ball, remember there’s some math behind that arc! Now, when factoring quadratics like this one, keep an eye out for common factors! In this case, all terms can be simplified by 3. So you'll want to rewrite it as \( x^{2} - 2x - 3 \) first. Then, you can find two numbers that multiply to -3 and add to -2, leading you to the factors of the complete expression. Happy factoring!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad