\( \frac{x+1}{x-1}=\frac{-9}{x+3}+\frac{8}{x^{2}+2 x-3} \) One or more solutions:
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To solve the equation \( \frac{x+1}{x-1}=\frac{-9}{x+3}+\frac{8}{x^{2}+2 x-3} \), first, note that \( x^2 + 2x - 3 \) factors to \( (x + 3)(x - 1) \). This allows you to write the equation with a common denominator, which is \( (x - 1)(x + 3) \). Next, combine the fractions on the right side: \[ \frac{-9(x - 1) + 8}{(x + 3)(x - 1)} = \frac{-9x + 9 + 8}{(x + 3)(x - 1)} = \frac{-9x + 17}{(x + 3)(x - 1)}. \] Now, rewrite the left side: \[ \frac{x + 1}{x - 1} = \frac{(x + 1)(x + 3)}{(x - 1)(x + 3)}. \] Set both sides equal now: \[ \frac{(x + 1)(x + 3)}{(x - 1)(x + 3)} = \frac{-9x + 17}{(x + 3)(x - 1)}. \] Multiplying both sides by \( (x - 1)(x + 3) \) gives: \[ (x + 1)(x + 3) = -9x + 17. \] Expanding the left side: \[ x^2 + 4x + 3 = -9x + 17. \] Bringing everything to one side results in: \[ x^2 + 13x - 14 = 0. \] Now you can factor or use the quadratic formula to solve this: \[ (x + 14)(x - 1) = 0, \] yielding \( x = -14 \) and \( x = 1 \). However, since \( x = 1 \) makes the original denominator zero, the only solution is: \[ x = -14. \] So, the solution is: \[ x = -14. \]