Pregunta
upstudy study bank question image url

\( \frac{x+1}{x-1}=\frac{-9}{x+3}+\frac{8}{x^{2}+2 x-3} \) One or more solutions:

Ask by Munoz Erickson. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( x = -14 \)

Solución

To solve the equation: \[ \frac{x+1}{x-1} = \frac{-9}{x+3} + \frac{8}{x^{2}+2x-3} \] **Step 1: Factor the Denominator** Notice that \( x^2 + 2x - 3 \) factors as \( (x+3)(x-1) \). Rewrite the equation: \[ \frac{x+1}{x-1} = \frac{-9}{x+3} + \frac{8}{(x+3)(x-1)} \] **Step 2: Find a Common Denominator** The common denominator for all terms is \( (x+3)(x-1) \). Rewrite each term with this denominator: \[ \frac{(x+1)(x+3)}{(x+3)(x-1)} = \frac{-9(x-1)}{(x+3)(x-1)} + \frac{8}{(x+3)(x-1)} \] **Step 3: Eliminate the Denominator** Since \( (x+3)(x-1) \neq 0 \), multiply both sides of the equation by \( (x+3)(x-1) \): \[ (x+1)(x+3) = -9(x-1) + 8 \] **Step 4: Expand and Simplify** Expand the left side and simplify the right side: \[ x^2 + 4x + 3 = -9x + 17 \] Bring all terms to one side: \[ x^2 + 13x - 14 = 0 \] **Step 5: Solve the Quadratic Equation** Use the quadratic formula: \[ x = \frac{-13 \pm \sqrt{13^2 - 4(1)(-14)}}{2(1)} = \frac{-13 \pm \sqrt{225}}{2} = \frac{-13 \pm 15}{2} \] This gives two potential solutions: \[ x = 1 \quad \text{and} \quad x = -14 \] **Step 6: Check for Valid Solutions** Substitute \( x = 1 \) into the original equation: \[ \frac{2}{0} \quad \text{(undefined)} \] Thus, \( x = 1 \) is not a valid solution. Substitute \( x = -14 \) into the original equation: \[ \frac{-13}{-15} = \frac{9}{-11} + \frac{8}{165} \] Simplifying both sides: \[ \frac{13}{15} = \frac{143}{165} \] Both sides are equal, confirming that \( x = -14 \) is a valid solution. **Final Answer:** \( \boxed{-14} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the equation \( \frac{x+1}{x-1}=\frac{-9}{x+3}+\frac{8}{x^{2}+2 x-3} \), first, note that \( x^2 + 2x - 3 \) factors to \( (x + 3)(x - 1) \). This allows you to write the equation with a common denominator, which is \( (x - 1)(x + 3) \). Next, combine the fractions on the right side: \[ \frac{-9(x - 1) + 8}{(x + 3)(x - 1)} = \frac{-9x + 9 + 8}{(x + 3)(x - 1)} = \frac{-9x + 17}{(x + 3)(x - 1)}. \] Now, rewrite the left side: \[ \frac{x + 1}{x - 1} = \frac{(x + 1)(x + 3)}{(x - 1)(x + 3)}. \] Set both sides equal now: \[ \frac{(x + 1)(x + 3)}{(x - 1)(x + 3)} = \frac{-9x + 17}{(x + 3)(x - 1)}. \] Multiplying both sides by \( (x - 1)(x + 3) \) gives: \[ (x + 1)(x + 3) = -9x + 17. \] Expanding the left side: \[ x^2 + 4x + 3 = -9x + 17. \] Bringing everything to one side results in: \[ x^2 + 13x - 14 = 0. \] Now you can factor or use the quadratic formula to solve this: \[ (x + 14)(x - 1) = 0, \] yielding \( x = -14 \) and \( x = 1 \). However, since \( x = 1 \) makes the original denominator zero, the only solution is: \[ x = -14. \] So, the solution is: \[ x = -14. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad