Pregunta
upstudy study bank question image url

Determine whether the function is even, odd, or neither. Then determine whether the function's graph is symmetric with respect to the \( y \)-axis, the origin, or neither. \( f(x)=x^{5}-3 x \) Determine whether the function is even, odd, or neither. Choose the correct answer below. neither odd even Determine whether the graph of the function is symmetric with respect to the \( y \)-axis, the origin, or neither. Select all that apply. \( y \)-axis neither origin

Ask by Love Williams. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function \( f(x) = x^{5} - 3x \) is **odd** and its graph is **symmetric with respect to the origin**.

Solución

To determine whether the function \( f(x) = x^{5} - 3x \) is even, odd, or neither, and to identify its graph's symmetry, follow these steps: ### 1. Determine if the Function is Even, Odd, or Neither **Definitions:** - **Even Function:** Satisfies \( f(-x) = f(x) \). Its graph is symmetric about the \( y \)-axis. - **Odd Function:** Satisfies \( f(-x) = -f(x) \). Its graph is symmetric about the origin. - **Neither:** Does not satisfy either condition. **Calculation:** \[ f(-x) = (-x)^5 - 3(-x) = -x^5 + 3x = -(x^5 - 3x) = -f(x) \] Since \( f(-x) = -f(x) \), the function satisfies the condition for an **odd function**. ### 2. Determine the Graph's Symmetry Given that the function is **odd**, its graph is **symmetric with respect to the origin**. ### **Final Answer:** - **Function Type:** Odd - **Graph Symmetry:** Origin **Selected Answers:** - **Determine whether the function is even, odd, or neither:** **odd** - **Determine whether the graph of the function is symmetric with respect to the \( y \)-axis, the origin, or neither:** **origin**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine if the function \( f(x) = x^5 - 3x \) is even, odd, or neither, we evaluate \( f(-x) \): \[ f(-x) = (-x)^5 - 3(-x) = -x^5 + 3x = -(x^5 - 3x) = -f(x) \] Since \( f(-x) = -f(x) \), the function is odd. An odd function means that the graph of the function is symmetric with respect to the origin. Now, let's consider what this means in practical terms! An odd function like \( f(x) = x^5 - 3x \) can be visualized as a kind of mirror image across the origin; if you were to flip it upside down while also moving it horizontally, you'd see the same shape! For those who enjoy exploring more about functions, diving into the fascinating world of polynomial functions can be particularly enlightening. Books like "Algebra and Trigonometry" by Michael Sullivan offer in-depth explanations and examples, making complex concepts easier to grasp. Plus, they often include real-world applications to showcase how these mathematical principles play out in various professional fields!

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad