Pregunta
upstudy study bank question image url

rom the observation deck of a kyscraper, Bentley measures a \( 48^{\circ} \) ngle of depression to a ship in the arbor below. If the observation deck 969 feet high, what is the horizonta istance from the base of the kyscraper out to the ship? Round yo nswer to the nearest tenth of a foot lecessary.

Ask by John Nunez. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The horizontal distance from the base of the skyscraper to the ship is approximately 807.4 feet.

Solución

To find the horizontal distance from the base of the skyscraper to the ship, we can use the concept of trigonometry. Given: - Angle of depression = \(48^\circ\) - Height of the observation deck = 969 feet We can use the tangent function to find the horizontal distance. The tangent of an angle in a right triangle is the ratio of the length of the side opposite the angle to the length of the side adjacent to the angle. Let's denote the horizontal distance from the base of the skyscraper to the ship as \(x\). Using the tangent function: \[ \tan(48^\circ) = \frac{969}{x} \] To find the horizontal distance \(x\), we can rearrange the equation: \[ x = \frac{969}{\tan(48^\circ)} \] Now, we can calculate the value of \(x\) using the tangent function and round it to the nearest tenth of a foot. The horizontal distance from the base of the skyscraper to the ship is approximately 807.4 feet. Therefore, the horizontal distance from the base of the skyscraper out to the ship is approximately 807.4 feet.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the horizontal distance from the base of the skyscraper to the ship, we can use the tangent of the angle of depression. In this case, we have a right triangle where the height of the skyscraper (opposite side) is 969 feet, and the angle of depression, which is equivalent to the angle of elevation from the ship to the observation deck, is \(48^\circ\). Using the tangent function: \[ \tan(48^\circ) = \frac{\text{opposite}}{\text{adjacent}} = \frac{969}{d} \] Rearranging for \(d\): \[ d = \frac{969}{\tan(48^\circ)} \] Calculating this gives us: \[ d \approx \frac{969}{1.1106} \approx 873.7 \text{ feet} \] So, the horizontal distance from the base of the skyscraper to the ship is approximately \(873.7\) feet. Now, just for a little fun fact, did you know that the angle of depression and angle of elevation are essentially two sides of the same coin? The angle of depression from the observation deck corresponds with the angle of elevation from the ship. So next time you find yourself on an observation deck, take a moment to think about the angles all around you! On a practical note, understanding these concepts can help in real-world applications like aviation and marine navigation. Pilots and ship captains often use angles of depression and elevation to gauge distances and height, ensuring they navigate safely and efficiently. It’s all about keeping things on point, literally!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad