Pregunta
upstudy study bank question image url

Simplify the following radical expression. \( \sqrt[3]{40} \)

Ask by Rogers Wheeler. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ \sqrt[3]{40} = 2\, \sqrt[3]{5} \]

Solución

To simplify the radical expression \( \sqrt[3]{40} \), follow these steps: 1. **Factor the Radicand:** Start by factoring the number inside the cube root (the radicand) into its prime factors. \[ 40 = 8 \times 5 \] Here, \( 8 \) is a perfect cube because \( 8 = 2^3 \). 2. **Rewrite the Cube Root Using the Factors:** Use the property of radicals that allows you to separate the cube root of a product into the product of cube roots. \[ \sqrt[3]{40} = \sqrt[3]{8 \times 5} = \sqrt[3]{8} \times \sqrt[3]{5} \] 3. **Simplify the Cube Root of the Perfect Cube:** Since \( \sqrt[3]{8} = 2 \), substitute this value back into the expression. \[ \sqrt[3]{8} \times \sqrt[3]{5} = 2 \times \sqrt[3]{5} \] 4. **Final Simplified Form:** Combine the terms to write the simplified expression. \[ \sqrt[3]{40} = 2 \sqrt[3]{5} \] **Answer:** \[ \sqrt[3]{40} = 2\, \sqrt[3]{5} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To simplify \( \sqrt[3]{40} \), we first factor 40 into its prime components: \( 40 = 8 \times 5 = 2^3 \times 5 \). The cube root of 8 is 2, so we can rewrite the expression as follows: \[ \sqrt[3]{40} = \sqrt[3]{2^3 \times 5} = \sqrt[3]{2^3} \times \sqrt[3]{5} = 2\sqrt[3]{5}. \] Thus, \( \sqrt[3]{40} = 2\sqrt[3]{5} \). 2\(\sqrt[3]{5}\) is the simplified form of your radical expression!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad