Pregunta
Simplify the following radical expression. \( \sqrt[3]{40} \)
Ask by Rogers Wheeler. in the United States
Jan 27,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\[ \sqrt[3]{40} = 2\, \sqrt[3]{5} \]
Solución
To simplify the radical expression \( \sqrt[3]{40} \), follow these steps:
1. **Factor the Radicand:**
Start by factoring the number inside the cube root (the radicand) into its prime factors.
\[
40 = 8 \times 5
\]
Here, \( 8 \) is a perfect cube because \( 8 = 2^3 \).
2. **Rewrite the Cube Root Using the Factors:**
Use the property of radicals that allows you to separate the cube root of a product into the product of cube roots.
\[
\sqrt[3]{40} = \sqrt[3]{8 \times 5} = \sqrt[3]{8} \times \sqrt[3]{5}
\]
3. **Simplify the Cube Root of the Perfect Cube:**
Since \( \sqrt[3]{8} = 2 \), substitute this value back into the expression.
\[
\sqrt[3]{8} \times \sqrt[3]{5} = 2 \times \sqrt[3]{5}
\]
4. **Final Simplified Form:**
Combine the terms to write the simplified expression.
\[
\sqrt[3]{40} = 2 \sqrt[3]{5}
\]
**Answer:**
\[ \sqrt[3]{40} = 2\, \sqrt[3]{5} \]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To simplify \( \sqrt[3]{40} \), we first factor 40 into its prime components: \( 40 = 8 \times 5 = 2^3 \times 5 \). The cube root of 8 is 2, so we can rewrite the expression as follows: \[ \sqrt[3]{40} = \sqrt[3]{2^3 \times 5} = \sqrt[3]{2^3} \times \sqrt[3]{5} = 2\sqrt[3]{5}. \] Thus, \( \sqrt[3]{40} = 2\sqrt[3]{5} \). 2\(\sqrt[3]{5}\) is the simplified form of your radical expression!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium