Pregunta
Simplify the radical expression: \( \sqrt{72} \)
Ask by Logan Moran. in South Africa
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( \sqrt{72} = 6\sqrt{2} \)
Solución
To simplify the radical expression \( \sqrt{72} \), follow these steps:
1. **Factor the Number Inside the Radical:**
Begin by finding the prime factors of 72.
\[
72 = 36 \times 2 = 6^2 \times 2
\]
2. **Apply the Square Root Property:**
The square root of a product is the product of the square roots.
\[
\sqrt{72} = \sqrt{36 \times 2} = \sqrt{36} \times \sqrt{2}
\]
3. **Simplify the Square Roots:**
\[
\sqrt{36} = 6 \quad \text{and} \quad \sqrt{2} \text{ remains as is since 2 is a prime number.}
\]
4. **Combine the Simplified Terms:**
\[
\sqrt{72} = 6\sqrt{2}
\]
**Final Answer:**
\[
\sqrt{72} = 6\sqrt{2}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To simplify \( \sqrt{72} \), we can factor 72 into its prime factors: \( 72 = 36 \times 2 \) and since \( \sqrt{36} = 6 \), we can express the radical as follows: \( \sqrt{72} = \sqrt{36 \times 2} = \sqrt{36} \times \sqrt{2} = 6\sqrt{2} \). Remember, breaking down radicals can turn a complicated expression into something much more manageable! Keep practicing with different numbers, and you'll get the hang of it in no time!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium