Between which two consecutive integers do the following irrational numbers lie? \( \begin{array}{lll}\text { (1) } \sqrt{7} & \text { (2) }-\sqrt{3} & \text { (3) } \sqrt{97} \\ \text { NUMBERS AND THEIR USES } & \end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
The number \( \sqrt{7} \) lies between the integers \( 2 \) and \( 3 \) because \( 2^2 = 4 < 7 < 9 = 3^2 \). So, you'll find that \( 2 < \sqrt{7} < 3 \). For \( -\sqrt{3} \), which is approximately \(-1.732\), it lies between \(-2\) and \(-1\). Thus, it fits in the interval \(-2 < -\sqrt{3} < -1\). Lastly, \( \sqrt{97} \) is roughly \( 9.8\), and it rests between \(9\) and \(10\) since \( 9^2 = 81 < 97 < 100 = 10^2\). Therefore, it can be expressed as \( 9 < \sqrt{97} < 10 \).