44. \( \lim _{x \rightarrow 0^{+}} x^{3} \cot x \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find \( \lim_{x \rightarrow 0^{+}} x^{3} \cot x \), we can rewrite \(\cot x\) as \(\frac{\cos x}{\sin x}\). Thus, the limit becomes: \[ \lim_{x \rightarrow 0^{+}} x^{3} \frac{\cos x}{\sin x} \] As \(x\) approaches \(0\), \(\cos x\) approaches \(1\), and \(\sin x\) can be approximated by its Taylor series expansion, which gives \(\sin x \approx x\) near zero. Therefore, we can substitute: \[ \lim_{x \rightarrow 0^{+}} x^{3} \frac{1}{\sin x} = \lim_{x \rightarrow 0^{+}} x^{3} \frac{1}{x} = \lim_{x \rightarrow 0^{+}} x^{2} = 0 \] Thus, the limit is: \[ \boxed{0} \]