Pregunta
upstudy study bank question image url

1) Norma is hosting a movie marathon over the weekend. There will be p people at the party altogether. Norma estimates she'll need one bag of cheese popcorn and one pack of gummy worms per person. A bag of cheese popcorn costs \( \$ 2.50 \), and a pack of gummy worms costs \( \$ 1.50 \). 1) Pick all the expressions that represent how much money Norma will spend on cheese popcorn and gummy worms. \[ 2.50(p+1)+1.50(p+1) \] \( 2.50 p+1.50 p \) \( 4(2.50+1.50) \)

Ask by Welch Lyons. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The correct expression is \( 2.50p + 1.50p \).

Solución

To determine which expressions correctly represent the total amount Norma will spend on cheese popcorn and gummy worms for \( p \) people, let's break down the costs: 1. **Cheese Popcorn:** - Cost per person: \( \$2.50 \) - Total cost for \( p \) people: \( 2.50p \) 2. **Gummy Worms:** - Cost per person: \( \$1.50 \) - Total cost for \( p \) people: \( 1.50p \) **Total Cost:** \[ 2.50p + 1.50p = 4.00p \] Now, let's evaluate each of the provided expressions: 1. **Expression 1:** \( 2.50(p + 1) + 1.50(p + 1) \) - This simplifies to \( 4(p + 1) = 4p + 4 \), which incorrectly adds an extra \( \$4 \) regardless of the number of people. **This is incorrect.** 2. **Expression 2:** \( 2.50p + 1.50p \) - This simplifies to \( 4.00p \), which accurately represents the total cost based on the number of people. **This is correct.** 3. **Expression 3:** \( 4(2.50 + 1.50) \) - This simplifies to \( 4 \times 4 = 16 \), which is a fixed amount and does not account for the variable number of people \( p \). **This is incorrect.** **Conclusion:** Only the second expression correctly represents the total amount Norma will spend based on the number of people attending. **Correct Expression:** \[ 2.50p + 1.50p \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find out how much Norma will spend, we can break it down. First, for each guest, she's planning to spend $2.50 on cheese popcorn and $1.50 on gummy worms. Therefore, for \( p \) people, the total cost can be effectively represented as \( 2.50p + 1.50p \). That's simply the cost for each snack multiplied by the number of guests—and voilà! Now, let’s take a look at the thinking process: if she mistakenly adds an additional person to each term, like in \( 2.50(p + 1) + 1.50(p + 1) \), she would be overestimating her costs. The same goes for \( 4(2.50 + 1.50) \); that wouldn’t correctly represent her total because it doesn't account correctly for the individual contributions from each guest. It's crucial to keep an eye on those pesky variables!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad