Pregunta
upstudy study bank question image url

How much would you have to deposit in an account with a \( 6.5 \% \) interest rate, compounded continuously, to have \( \$ 5000 \) in your account 12 years later? \[ P=\$[\text { ? ] } \]

Ask by Bright Bartlett. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

You need to deposit approximately \$2,292 today to have \$5,000 in your account after 12 years with a 6.5% continuously compounded interest rate.

Solución

To determine how much you need to deposit now (\( P \)) to have \$5,000 in your account after 12 years with a continuously compounded interest rate of 6.5%, you can use the formula for continuous compounding: \[ A = P \cdot e^{rt} \] Where: - \( A \) is the future value (\$5,000), - \( r \) is the annual interest rate (6.5% or 0.065), - \( t \) is the time in years (12), - \( e \) is the base of the natural logarithm (approximately 2.71828). Rearranging the formula to solve for \( P \): \[ P = \frac{A}{e^{rt}} \] Plugging in the values: \[ P = \frac{5000}{e^{0.065 \times 12}} = \frac{5000}{e^{0.78}} \] Calculate \( e^{0.78} \): \[ e^{0.78} \approx 2.1815 \] Now, compute \( P \): \[ P \approx \frac{5000}{2.1815} \approx 2292.03 \] **Therefore, you would need to deposit approximately \$2,292 today to have \$5,000 in your account after 12 years with a 6.5% continuously compounded interest rate.** \[ P = \$2,292 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find out how much you need to deposit, you can use the formula for continuously compounded interest, which is given by \( A = Pe^{rt} \). Here, \( A \) is the amount you want in the future ($5000), \( P \) is the principal amount (what you need to find), \( r \) is the interest rate (6.5% or 0.065), and \( t \) is the time in years (12). Rearranging the formula to solve for \( P \) gives us \( P = \frac{A}{e^{rt}} \). Substituting the values, we get \( P = \frac{5000}{e^{(0.065 \times 12)}} \). Calculate the exponent \( e^{0.78} \), and you'll find that you need to deposit approximately \( P \approx \$2447.82 \) today to reach your goal in 12 years! Investing wisely can lead to great financial freedom, but it's important to understand that even small differences in interest rates can have big impacts over time. For example, let’s say you varied the interest rate or the deposit duration a bit; it would change your future savings goal dramatically! So, always keep an eye on those financial trends. And remember, starting early with investments can give the money more time to grow!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad