Pregunta
upstudy study bank question image url

\( \sum _ { p = 5 } ^ { m } ( 2 - 3 p ) = - 7085 \)

Ask by Newton Cole. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( m = 69 \)

Solución

To solve the equation: \[ \sum_{p=5}^{m} (2 - 3p) = -7085 \] we need to find the value of \( m \). ### Step 1: Understand the Summation The summation is an arithmetic series where each term is given by \( 2 - 3p \) for \( p \) ranging from 5 to \( m \). ### Step 2: Express the Sum of the Series The sum of an arithmetic series can be calculated using the formula: \[ S_n = \frac{n}{2} \times (\text{first term} + \text{last term}) \] Where: - \( n = m - 4 \) (since the series starts at \( p = 5 \)) - The first term \( a = 2 - 3 \times 5 = -13 \) - The last term \( l = 2 - 3m \) So, the sum becomes: \[ S_n = \frac{m - 4}{2} \times (-13 + (2 - 3m)) = -7085 \] ### Step 3: Simplify the Equation \[ \frac{m - 4}{2} \times (-11 - 3m) = -7085 \] Multiply both sides by 2: \[ (m - 4)(-11 - 3m) = -14170 \] Expand the left side: \[ -3m^2 + m + 44 = -14170 \] Bring all terms to one side: \[ -3m^2 + m + 14214 = 0 \] Multiply by -1 to make it easier to solve: \[ 3m^2 - m - 14214 = 0 \] ### Step 4: Solve the Quadratic Equation Use the quadratic formula: \[ m = \frac{1 \pm \sqrt{1 + 4 \times 3 \times 14214}}{2 \times 3} \] Calculate the discriminant: \[ \sqrt{1 + 170568} = \sqrt{170569} = 413 \] So, \[ m = \frac{1 \pm 413}{6} \] This gives two solutions: 1. \( m = \frac{414}{6} = 69 \) 2. \( m = \frac{-412}{6} \approx -68.67 \) (Discard this since \( m \) must be a positive integer) ### Conclusion The value of \( m \) that satisfies the equation is: \[ m = 69 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the equation \( \sum _ { p = 5 } ^ { m } ( 2 - 3 p ) = - 7085 \), let's start by calculating the sum explicitly. The expression inside the summation can be rearranged: \( 2 - 3p \) is a linear function. When we sum from \( p = 5 \) to \( m \), we can calculate the sum of the first few terms and then use the formula for the sum of an arithmetic series. Now, the sum can be split: \( \sum (2 - 3p) = \sum 2 - 3 \sum p \). The first part simplifies to \( 2(m - 4) \) since we're summing the constant 2 for \( m - 4 \) terms. The second part calculates to \( 3 \cdot \frac{m(m + 1)}{2} - \frac{4 \cdot 5}{2} \). By equating this to -7085 and solving for \( m \), we find the largest integer that will satisfy the initial summation equation. Remember to check for integer values of \( m \) that could possibly yield a correct calculation as this sum is defined for integer inputs only! Use consistent checks and simple arithmetic to avoid common mistakes in these equations.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad