Find the Slant Asymptote of \( f(x)=\left(4 x^{2}-16\right) /(x-3) \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the slant (or oblique) asymptote of the function \( f(x) = \frac{4x^2 - 16}{x - 3} \), you can perform polynomial long division. Divide \( 4x^2 - 16 \) by \( x - 3 \). 1. The first term \( 4x^2 \div x \) gives \( 4x \). 2. Multiply \( 4x \) by \( x - 3 \), resulting in \( 4x^2 - 12x \). 3. Subtract: \( (4x^2 - 16) - (4x^2 - 12x) = 12x - 16 \). 4. Divide \( 12x \div x = 12 \). 5. Multiply: \( 12(x - 3) = 12x - 36 \). 6. Subtract again: \( (12x - 16) - (12x - 36) = 20 \). So, \( f(x) = 4x + 12 + \frac{20}{x - 3} \). As \( x \to \pm \infty \), the term \( \frac{20}{x - 3} \) approaches zero, leaving the slant asymptote as \( y = 4x + 12 \). In conclusion, the slant asymptote of the function \( f(x) \) is: \[ y = 4x + 12. \]