Pregunta
upstudy study bank question image url

1 Multiple Choice 5 points Youinvested \( \$ 1500 \) into an account with an annual percentage rate of \( 6 \% \) compounded annually. You plan to keep the money in the account for the next 10 years. Consider the function that relates the time and the amount of money in the account. Which is the most appropriate domain? \[ \begin{array}{l}x \geq 0 \\ 0 \leq x \leq 10 \\ y \geq 1500 \\ 1500 \leq x \leq 2686\end{array} \]

Ask by Brewer Bowen. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The most appropriate domain is \( 0 \leq x \leq 10 \).

Solución

To determine the most appropriate domain for the function that relates time (\( x \)) to the amount of money (\( y \)) in the account, let's analyze the given scenario: - **Initial Investment:** \( \$1500 \) - **Annual Interest Rate:** \( 6\% \) compounded annually - **Investment Duration:** 10 years ### Understanding the Variables: - **\( x \)** represents the time in years. - **\( y \)** represents the amount of money in the account after \( x \) years. ### Analyzing the Options: 1. **\( x \geq 0 \):** - This implies that time can be any non-negative value, extending indefinitely into the future. - **Not appropriate** because the investment is planned for a specific duration of 10 years. 2. **\( 0 \leq x \leq 10 \):** - This restricts time to the period from the start (0 years) up to 10 years. - **Appropriate** as it aligns with the investment duration. 3. **\( y \geq 1500 \):** - This describes the range of the function, indicating that the amount will be at least the initial investment. - **Not the domain**, so it's irrelevant for this question. 4. **\( 1500 \leq x \leq 2686 \):** - This incorrectly assigns monetary values to \( x \), which represents time. - **Incorrect** because \( x \) should represent time, not money. ### Conclusion: The most appropriate domain for the function is the one that restricts \( x \) to the investment period of 10 years. **Answer:** \( 0 \leq x \leq 10 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

When considering the duration of your investment, the most appropriate domain for this context is \( 0 \leq x \leq 10 \). This means that \( x \) represents the number of years the money is kept in the account, starting from 0 years (the initial investment) to 10 years (the planned duration of the investment). Understanding how compound interest works can provide exciting insights about your investment growth. Over those 10 years at a 6% annual interest rate, your initial investment of $1500 will not just grow by simple arithmetic; it will increase exponentially due to being compounded. In fact, you will end up with around $2686, showcasing the power of compound interest!

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad