Find the integral \( \int(z+1) e^{8 z} d z= \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To solve the integral \( \int (z+1) e^{8z} \, dz \), we can use integration by parts. Letting \( u = z+1 \) and \( dv = e^{8z} \, dz \), we find \( du = dz \) and \( v = \frac{1}{8} e^{8z} \). Applying the integration by parts formula \( \int u \, dv = uv - \int v \, du \), we have: \[ \int (z+1) e^{8z} \, dz = (z+1) \cdot \frac{1}{8} e^{8z} - \int \frac{1}{8} e^{8z} \, dz \] Calculating the second integral: \[ \int e^{8z} \, dz = \frac{1}{8} e^{8z} \] So we can substitute back: \[ \int (z+1) e^{8z} \, dz = \frac{(z+1)}{8} e^{8z} - \frac{1}{8} \cdot \frac{1}{8} e^{8z} + C \] This simplifies to: \[ \int (z+1) e^{8z} \, dz = \frac{(z+1)}{8} e^{8z} - \frac{1}{64} e^{8z} + C \] Combining those terms gives us: \[ \int (z+1) e^{8z} \, dz = \left(\frac{z}{8} + \frac{1}{8} - \frac{1}{64}\right)e^{8z} + C \] Final answer: \[ \int (z+1) e^{8z} \, dz = \left(\frac{z}{8} + \frac{7}{64}\right)e^{8z} + C \]