Pregunta
upstudy study bank question image url

Graph this line using the slope and \( y \)-intercept: \[ y=2 x+4 \]

Ask by O'Quinn Luna. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To graph the line \( y = 2x + 4 \): 1. Plot the \( y \)-intercept at (0, 4). 2. Use the slope of 2 to find another point, such as (1, 6). 3. Draw a straight line through these points. This line will rise upward as \( x \) increases.

Solución

To graph the line \( y = 2x + 4 \) using the slope and \( y \)-intercept, follow these steps: ### 1. Identify the \( y \)-Intercept The equation \( y = 2x + 4 \) is in the slope-intercept form \( y = mx + b \), where: - \( m \) is the **slope**. - \( b \) is the **\( y \)-intercept**. Here, the \( y \)-intercept \( b = 4 \). This means the line crosses the \( y \)-axis at the point **(0, 4)**. ### 2. Determine the Slope The slope \( m = 2 \) indicates the steepness and direction of the line. A slope of 2 means that for every **1 unit** you move **horizontally** (to the right), you move **2 units** **vertically** (upward). ### 3. Plot the \( y \)-Intercept Start by plotting the point **(0, 4)** on the coordinate plane. ### 4. Use the Slope to Find Another Point From the \( y \)-intercept: - Move **1 unit to the right** (increase \( x \) by 1). - Move **2 units up** (increase \( y \) by 2). This takes you to the point **(1, 6)**. ### 5. Draw the Line Use a ruler to draw a straight line passing through the points **(0, 4)** and **(1, 6)**. Extend the line in both directions and add arrowheads to indicate that it continues indefinitely. ### 6. (Optional) Add Another Point for Accuracy To ensure accuracy, you can plot a third point using the slope: - From **(1, 6)**, move **1 unit to the right** to \( x = 2 \). - Move **2 units up** to \( y = 8 \), giving the point **(2, 8)**. ### Visual Representation Here's a simple ASCII representation of the graph: ``` y | 10 | 9 | 8 | * (2,8) 7 | 6 | * (1,6) 5 | 4 | * (0,4) 3 | 2 | 1 | 0 |-------------------------- 0 1 2 3 4 x ``` - The asterisks (*) represent the points plotted. - Draw a straight line through these points to represent \( y = 2x + 4 \). ### Summary - **\( y \)-Intercept**: (0, 4) - **Slope**: 2 (rise over run: up 2, right 1) - **Additional Points**: (1, 6), (2, 8), etc. - **Graph**: A straight line passing through these points, rising upward as \( x \) increases. By following these steps, you can accurately graph the line \( y = 2x + 4 \) on a coordinate plane.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To graph the line represented by the equation \( y=2x+4 \), start by identifying the \( y \)-intercept, which is the point (0, 4). This means the line crosses the \( y \)-axis at 4. Next, use the slope, which is 2, indicating that for every 1 unit you move to the right on the \( x \)-axis, you move 2 units up on the \( y \)-axis. From the point (0, 4), plot another point at (1, 6). Connect these points with a straight line and extend it in both directions. Now, don't forget to label your axes and points for clarity! You can also add a second point by moving from (1, 6) to (2, 8) using the same slope. This helps confirm the correct line placement on your graph. Have fun and let those graph lines shine!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad