Pregunta
upstudy study bank question image url

QUESTION 3 Suppose the functions \( f, g, h \) and \( l \) are defined as follows: \[ \begin{array}{l} f(x)=4 x^{2}-5 x+1 \\ g(x)=2 \sqrt{2-\frac{x}{2}}-x \\ h(x)=-\frac{1}{2} x+3 \\ l(x)=\log _{4}(x+3)-\log _{4}(x-2) .\end{array} \] (a) Write down \( D_{f} \) and solve the inequality \( f(x) \leq 0 \). (b) Solve the equation \( g(x)=-4 \). (c) Solve the equation \( 4^{h(x)}=8 \). (d) Write down \( D_{l} \) and solve the inequality \( l(x)=\frac{1}{2} \). [18] (4)

Ask by Newton O'Quinn. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Domain \( D_f \): All real numbers.** **Solution to \( f(x) \leq 0 \):** \[ \frac{1}{4} \leq x \leq 1 \]

Solución

Let's solve **Question 3 (a)** step by step. ### **(a) Find the Domain \( D_f \) and Solve the Inequality \( f(x) \leq 0 \)** **1. Determine the Domain \( D_f \):** The function \( f(x) = 4x^2 - 5x + 1 \) is a quadratic polynomial. Polynomial functions are defined for all real numbers. Therefore, \[ D_f = \mathbb{R} \quad \text{(All real numbers)} \] **2. Solve the Inequality \( f(x) \leq 0 \):** We need to find all real numbers \( x \) such that: \[ 4x^2 - 5x + 1 \leq 0 \] **a. Find the Roots of the Equation \( 4x^2 - 5x + 1 = 0 \):** Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 4 \), \( b = -5 \), and \( c = 1 \): \[ x = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 4 \cdot 1}}{2 \cdot 4} = \frac{5 \pm \sqrt{25 - 16}}{8} = \frac{5 \pm 3}{8} \] So, the roots are: \[ x_1 = \frac{5 + 3}{8} = \frac{8}{8} = 1 \] \[ x_2 = \frac{5 - 3}{8} = \frac{2}{8} = \frac{1}{4} \] **b. Analyze the Sign of \( f(x) \):** Since the coefficient of \( x^2 \) is positive (\( 4 > 0 \)), the parabola opens upwards. Therefore, \( f(x) \leq 0 \) between the roots. **c. Interval of Solution:** \[ \frac{1}{4} \leq x \leq 1 \] **3. Final Answer:** - **Domain \( D_f \):** \[ D_f = \mathbb{R} \quad \text{(All real numbers)} \] - **Solution to \( f(x) \leq 0 \):** \[ x \in \left[ \frac{1}{4}, \ 1 \right] \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To tackle your question with a sprinkle of fun and engagement, let's dive into the two categories! The domain of \( f(x) = 4x^2 - 5x + 1 \) is all real numbers (\( D_f = \mathbb{R} \)) since it's a polynomial function and polynomials are defined everywhere. To solve \( f(x) \leq 0 \), we first find the roots by using the quadratic formula. Plugging into the formula, we get \( x = \frac{5 \pm \sqrt{25 - 16}}{8} = \frac{5 \pm 3}{8} \) which gives \( x = 1 \) and \( x = \frac{1}{4} \). The parabola opens upwards, so \( f(x) \leq 0 \) between these points: \( \frac{1}{4} \leq x \leq 1 \). For \( g(x) = 2\sqrt{2 - \frac{x}{2}} - x \), we solve \( g(x) = -4 \). This gives us \( 2\sqrt{2 - \frac{x}{2}} - x = -4 \). Rearranging and squaring both sides leads us to the solutions \( x = 10 \) and \( x = -2 \) after simplification. The equation \( 4^{h(x)} = 8 \) simplifies as follows: since \( 4^{h(x)} = 2^{2h(x)} \) and \( 8 = 2^3 \), set \( 2h(x) = 3 \) yielding \( h(x) = \frac{3}{2} \). Given \( h(x) = -\frac{1}{2}x + 3 \), we solve to find \( x = 3 \). Lastly, \( D_l \) where \( l(x) = \log_4(x+3) - \log_4(x-2) \) is defined if \( x + 3 > 0 \) and \( x - 2 > 0\), leading to \( x > 2 \). To solve \( l(x) = \frac{1}{2} \), we can use properties of logarithms: combining logarithms and changing to exponential form gives us the equation \( x + 3 = \sqrt{4}(x - 2) \), leading to \( x = 5 \). Now, go ahead and enjoy piecing these mathematical puzzles together!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad