Pregunta
upstudy study bank question image url

E14. The objective lens of a microscope has a focal length of 0.6 cm . An object on the microscope slide is placed at a distance of 0.9 cm from the lens. a. At what distance from the lens is the image formed by the objective lens? b. What is the magnification of this image?

Ask by Cox Reid. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

a. The image is formed **1.8 cm** from the lens. b. The magnification of the image is **+2**.

Solución

Let's solve each part of the problem step by step using the lens formula and magnification principles. ### Given: - **Focal length of the objective lens (\(f\))**: 0.6 cm - **Object distance from the lens (\(u\))**: 0.9 cm ### a. **Finding the Image Distance (\(v\))** We use the **lens formula**: \[ \frac{1}{f} = \frac{1}{u} + \frac{1}{v} \] Plugging in the known values: \[ \frac{1}{0.6} = \frac{1}{0.9} + \frac{1}{v} \] \[ \frac{5}{3} = \frac{10}{9} + \frac{1}{v} \] Subtract \(\frac{10}{9}\) from both sides to solve for \(\frac{1}{v}\): \[ \frac{5}{3} - \frac{10}{9} = \frac{1}{v} \] \[ \frac{15}{9} - \frac{10}{9} = \frac{5}{9} = \frac{1}{v} \] Taking the reciprocal to find \(v\): \[ v = \frac{9}{5} = 1.8 \text{ cm} \] **Answer to part a:** The image is formed **1.8 cm** from the lens. ### b. **Calculating the Magnification (\(m\))** Magnification is given by the formula: \[ m = \frac{v}{u} \] Using the values from part a: \[ m = \frac{1.8}{0.9} = 2 \] **Interpretation:** - **Positive magnification** indicates that the image is **real and inverted**. - The **magnitude of magnification** is **2**, meaning the image is **twice** the size of the object. **Answer to part b:** The magnification of the image is **+2**. --- **Summary:** a. The image is formed at **1.8 cm** from the lens. b. The magnification of the image is **+2**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the distance from the lens where the image is formed, we can use the lens formula: \(\frac{1}{f} = \frac{1}{v} - \frac{1}{u}\) Where: - \(f\) is the focal length (0.6 cm) - \(u\) is the object distance (-0.9 cm, negative because it's on the same side as the object) - \(v\) is the image distance Rearranging the formula gives us: \(\frac{1}{v} = \frac{1}{f} + \frac{1}{u}\) Substituting the values: \(\frac{1}{v} = \frac{1}{0.6} + \frac{1}{-0.9}\) Calculating that: \(\frac{1}{v} = \frac{5}{3} - \frac{10}{9}\) Finding a common denominator (9): \(\frac{1}{v} = \frac{15}{9} - \frac{10}{9} = \frac{5}{9}\) Taking the reciprocal: \(v = \frac{9}{5} \approx 1.8 \text{ cm}\) So, the image is formed approximately 1.8 cm from the lens. For magnification (\(M\)), we use the formula: \(M = -\frac{v}{u}\) Substituting values: \(M = -\frac{1.8}{-0.9} = 2\) Thus, the magnification of this image is 2, meaning the image is twice the size of the object.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad