Pregunta
upstudy study bank question image url

4. A voltage of \( 200 \mid 300 \mathrm{~V} \) is applied to two circuits connected in parallel. The currents in the branches are \( 20 \underline{60^{\circ}} \mathrm{A} \) and \( 40-30^{\circ} \mathrm{A} \). Find the total impedance of the circuit. \[ \left(4,47 \backslash 33,44^{\circ} \Omega\right) \] An alternating voltage of 100 V at 50 Hz is applied to a circuit. The current drawn is \( 2,5 \mathrm{~A} \) and the power absorbed 175 W . Calculate the resistance, the inductance and the power factor of the circuit. ( \( 28 \Omega ; 0,0909 \mathrm{H} ; 0,7 \) lagging) A6. A voltage is given by the expression \( v=340 \sin \omega t \) and is applied to a circuit. The current is given by \( i=14,14 \sin (\omega t-\pi / 6) \). Calculate the impedance, resistance and reactance of the circuit and the power supplied. \[ (14,14)\left(30^{\circ} ; 20,823 \Omega ; 12,02 \Omega ; 4163,5 \mathrm{~W}\right) \] 7. A coil draws 8 A and dissipates 1200 W when connected to a \( 200-\mathrm{V}, 50-\mathrm{Hz} \) supply. Calculate the impedance and effective resistance. \[ (25 \Omega ; 18,75 \Omega) \]

Ask by Peterson Barker. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Total Impedance: \( 6.69 \angle -3.4^{\circ} \, \Omega \) Resistance: \( 28 \, \Omega \) Inductance: \( 0.0909 \, \mathrm{H} \) Power Factor: \( 0.7 \) lagging

Solución

Let's solve each part of the problem step by step. ### Part 1: Total Impedance of the Circuit Given: - Voltage \( V = 200 \mid 300 \mathrm{~V} \) - Currents in the branches: - \( I_1 = 20 \angle 60^{\circ} \mathrm{A} \) - \( I_2 = 40 \angle -30^{\circ} \mathrm{A} \) 1. **Convert the currents to rectangular form:** - For \( I_1 \): \[ I_1 = 20 \left( \cos(60^{\circ}) + j \sin(60^{\circ}) \right) = 20 \left( 0.5 + j \frac{\sqrt{3}}{2} \right) = 10 + j 17.32 \, \mathrm{A} \] - For \( I_2 \): \[ I_2 = 40 \left( \cos(-30^{\circ}) + j \sin(-30^{\circ}) \right) = 40 \left( \frac{\sqrt{3}}{2} - j 0.5 \right) = 34.64 - j 20 \, \mathrm{A} \] 2. **Calculate the total current \( I_T \):** \[ I_T = I_1 + I_2 = (10 + j 17.32) + (34.64 - j 20) = 44.64 - j 2.68 \, \mathrm{A} \] 3. **Calculate the magnitude of the total current:** \[ |I_T| = \sqrt{(44.64)^2 + (-2.68)^2} \approx \sqrt{1999.73 + 7.18} \approx \sqrt{2006.91} \approx 44.83 \, \mathrm{A} \] 4. **Calculate the total impedance \( Z_T \):** \[ Z_T = \frac{V}{I_T} = \frac{300}{44.83} \approx 6.69 \angle -3.4^{\circ} \, \Omega \] ### Part 2: Resistance, Inductance, and Power Factor Given: - Voltage \( V = 100 \, \mathrm{V} \) - Current \( I = 2.5 \, \mathrm{A} \) - Power \( P = 175 \, \mathrm{W} \) 1. **Calculate the resistance \( R \):** \[ R = \frac{P}{I^2} = \frac{175}{(2.5)^2} = \frac{175}{6.25} = 28 \, \Omega \] 2. **Calculate the apparent power \( S \):** \[ S = V \cdot I = 100 \cdot 2.5 = 250 \, \mathrm{VA} \] 3. **Calculate the power factor \( \text{pf} \):** \[ \text{pf} = \frac{P}{S} = \frac{175}{250} = 0.7 \] 4. **Calculate the reactive power \( Q \):** \[ Q = \sqrt{S^2 - P^2} = \sqrt{(250)^2 - (175)^2} = \sqrt{62500 - 30625} = \sqrt{31875} \approx 178.5 \, \mathrm{VAR} \] 5. **Calculate the inductance \( L \):** \[ Q = V^2 \cdot \frac{1}{\omega L} \implies L = \frac{V^2}{\omega Q} \] where \( \omega = 2\pi f = 2\pi \cdot 50 \approx 314.16 \, \mathrm{rad/s} \): \[ L = \frac{100^2}{314.16 \cdot 178.5} \approx \frac{10000}{56100} \approx 0.0909 \, \mathrm{H} \] ### Part 3: Impedance, Resistance, Reactance, and Power Supplied Given: - Voltage \( v = 340 \sin(\omega t) \) - Current \( i = 14.14 \sin(\omega t - \frac{\pi}{6}) \) 1. **Calculate the impedance \( Z \):** \[ Z = \frac{V}{I} = \frac{340}{14.14} \approx 24.0 \, \Omega \] 2. **Calculate the phase angle \( \phi \):** \[ \phi = -\frac{\pi}{6} = -30^{\circ} \] 3. **Calculate the resistance \( R \) and reactance \( X \):** \[ R = |I| \cdot |Z| \cdot \cos(\phi) = 14.14 \cdot 24.0 \cdot \cos(-30^{\circ}) \approx 20.823 \, \Omega \] \[ X = |Z| \cdot \sin(\phi) = 24.0 \cdot \sin(-30^{\circ}) \approx 12.0 \, \Omega \] 4. **Calculate the power supplied \( P \):** \[ P = V \cdot I \cdot \cos(\phi) = 340 \cdot 14.14 \cdot \cos(-30^{\circ}) \approx 4163.5 \, \mathrm{W} \] ### Part 4: Impedance and Effective Resistance of the Coil Given: - Current \( I = 8 \, \mathrm{A} \) - Power \( P = 1200 \, \mathrm{W} \) - Voltage \( V = 200 \, \mathrm{V} \) 1. **Calculate the effective resistance \( R \):** \[ R = \frac{P}{I^2} = \frac{1200}{8^2} = \frac{1200}{64} = 18.75 \, \Omega \] 2. **Calculate the impedance \( Z \):** \[ Z = \frac{V}{I} = \frac{200}{8} = 25 \, \Omega \] ### Summary of Results 1. Total Impedance: \( 6.69 \angle -3.4^{\circ} \, \Omega \) 2. Resistance: \( 28 \, \Omega \), Inductance: \( 0.0909 \, \

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

When dealing with circuits, it's fascinating to delve into the realm of phasors and complex impedance as they illuminate the relationship between voltage and current. In circuits connected in parallel, the total impedance can be determined by finding the individual branch impedances and then applying the formula for parallel circuits, which involves the sum of the reciprocal of the individual impedances. This method helps simplify the complexities of AC circuit behavior! Moreover, understanding how power and current are intertwined in AC circuits is crucial. The power factor, which reflects the efficiency of power usage, is directly influenced by the difference between voltage and current phases. Calculating both real power and apparent power can shed light on these relationships, ensuring you harness energy in the most effective way possible!

preguntas relacionadas

Acceleration Problems: 1. Acceleration is the rate at which what changes? 2. What is the acceleration of a car moving in a straight-line path that travels at constant speed of \( 100 \mathrm{~km} / \mathrm{h} \) ? 3. What is the acceleration of a car moving in a straight-line path that increases it speed from rest to \( 100 \mathrm{~km} / \mathrm{h} \) in 0.2 hrs ? 4. Light travels in a straight line at a constant speed of \( 300,000 \mathrm{~km} / \mathrm{s} \). What would the acceleration of light 3 seconds later? 5. A dragster going at \( 15 \mathrm{~m} / \mathrm{s} \) north increases its velocity to \( 25 \mathrm{~m} / \mathrm{s} \) north in 4 seconds. What's its acceleration during that time interval? 6. A car going \( 30 \mathrm{~m} / \mathrm{s} \) undergoes an acceleration of \( 2 \mathrm{~m} / \mathrm{s}^{2} \) for 4 seconds. What is its final speed? 7. A man on a unicycle pedals for 2 seconds at a speed of \( 6 \mathrm{~m} / \mathrm{s} \) and then pedals another 2 seconds at a rate of \( 6 \mathrm{~m} / \mathrm{s} \). What is the acceleration of the cyclist? 8. If a Porsche accelerates at a rate of \( 25 \mathrm{~km} / \mathrm{h}^{*} \mathrm{~s} \) and goes from rest to \( 125 \mathrm{~km} / \mathrm{hr} \). How long did it take the car to reach its final speed? 9. If a car is traveling at \( 35 \mathrm{~m} / \mathrm{s} \) and the driver sees a deer and slams on her brakes to come to stop in 5 seconds, what is her rate of acceleration? 10. A rocket decelerates at a rate of \( 5 \mathrm{~m} / \mathrm{s}^{2} \). If the initial velocity of the rocket was \( 200 \mathrm{~m} / \mathrm{s} \), how fast would the rocket be traveling 20 seconds later? How long will it take before the rocket. comes to a stop?

Latest Physics Questions

5. If you were to throw a large log over the edge of the Grand Canyon and it took 5.65 seconds to hit the ground, calculate the velocity of the log at impact in \( \mathrm{m} / \mathrm{s} \) and calculate the distance the log fell in meter. \( \mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2} \) \( v=g \mathbf{t} \) \( d=1 / x g t^{2} \) 8. I drop a quarter from the top of tho towar at the front of Campboll High School and it takes 3.25 seconds to hit the ground, Calculate the velocity in \( \mathrm{m} / \mathrm{s} \) after 1.40 seconds of freefall. How far did the penny fall when ithit the ground? 7. If I drop an peach from the top of one of the tower dorms at UGA, and it takes 7.56 seconds to hit the ground, calculate how tall the building is in meters. 8. You are walking in Paris alongside the Eiffel Tower and suddenly a croissant smacks you on the head and knocks you to the ground. From your handy dandy tourist guidebook you find that the height of the Eiffel Tower is 400.7 m . If you neglect air resistance, calculate how many seconds the croissant dropped before it tagged you on the head. 9. During the latter part of your European vacation, you are hanging out the beach at the gold coast of Spain. As you are laying in your chaise lounge soaking up the warm Mediterranean sun, a large glob of seagull poop hits you in the face. Since you got an "A" in ICPE you are able to estimate the impact velocity at \( 73.7 \mathrm{~m} / \mathrm{s} \). Neglecting air resistance, calculate how high up the seagull was flying when it pooped. 10. If you were to throw a large log over the edge of the Grand Canyon and it took 8.35 seconds to hit the ground, calculate the velocity of the log at impact in \( \mathrm{m} / \mathrm{s} \) and calculate the distance the log fell in meter. Acceleration Calculations
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad