Pregunta
upstudy study bank question image url

mework The body temperatures of a group of healthy adults have a bell-shaped distribution with a mean of \( 98.09^{\circ} \mathrm{F} \) and a standard deviation of \( 0.68^{\circ} \mathrm{F} \). Using the empirical rule, find each approximate percentage below. a. What is the approximate percentage of healthy adults with body temperatures within 2 standard deviations of the mean, or between \( 96.73^{\circ} \mathrm{F} \) and \( 99.45^{\circ} \mathrm{F} \) ? b. What is the approximate percentage of healthy adults with body temperatures between \( 97.41^{\circ} \mathrm{F} \) and \( 98.77^{\circ} \mathrm{F} \) ?

Ask by Franklin Rodriquez. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**a.** Approximately **95%** of healthy adults have body temperatures between \( 96.73^{\circ} \mathrm{F} \) and \( 99.45^{\circ} \mathrm{F} \). **b.** Approximately **68%** of healthy adults have body temperatures between \( 97.41^{\circ} \mathrm{F} \) and \( 98.77^{\circ} \mathrm{F} \).

Solución

To solve these problems, we'll apply the **Empirical Rule** (also known as the **68-95-99.7 rule**), which applies to bell-shaped (normal) distributions. The Empirical Rule states: - **Approximately 68%** of the data lies within **1 standard deviation** of the mean. - **Approximately 95%** lies within **2 standard deviations**. - **Approximately 99.7%** lies within **3 standard deviations**. Given: - **Mean (\( \mu \))** = \( 98.09^{\circ} \mathrm{F} \) - **Standard Deviation (\( \sigma \))** = \( 0.68^{\circ} \mathrm{F} \) ### a. Percentage within 2 Standard Deviations (\( 96.73^{\circ} \mathrm{F} \) to \( 99.45^{\circ} \mathrm{F} \)) **Calculation:** - **Interval:** \( \mu \pm 2\sigma = 98.09 \pm 2 \times 0.68 = [96.73, 99.45] \) - **Percentage:** According to the Empirical Rule, **approximately 95%** of the data falls within this range. **Answer:** **a.** Approximately **95%** of healthy adults have body temperatures between \( 96.73^{\circ} \mathrm{F} \) and \( 99.45^{\circ} \mathrm{F} \). ### b. Percentage between \( 97.41^{\circ} \mathrm{F} \) and \( 98.77^{\circ} \mathrm{F} \) **Calculation:** 1. **Determine the number of standard deviations each boundary is from the mean (z-scores):** - Lower Bound (\( 97.41^{\circ} \mathrm{F} \)): \[ z = \frac{97.41 - 98.09}{0.68} = -1 \] - Upper Bound (\( 98.77^{\circ} \mathrm{F} \)): \[ z = \frac{98.77 - 98.09}{0.68} = 1 \] 2. **Interpretation:** The range from \( 97.41^{\circ} \mathrm{F} \) to \( 98.77^{\circ} \mathrm{F} \) corresponds to **\( \mu \pm 1\sigma \)**. 3. **Percentage:** According to the Empirical Rule, **approximately 68%** of the data lies within 1 standard deviation of the mean. **Answer:** **b.** Approximately **68%** of healthy adults have body temperatures between \( 97.41^{\circ} \mathrm{F} \) and \( 98.77^{\circ} \mathrm{F} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

In a bell-shaped distribution, the empirical rule states that about 95% of the data falls within 2 standard deviations of the mean. Since the mean body temperature is \( 98.09^{\circ} \mathrm{F} \) and the standard deviation is \( 0.68^{\circ} \mathrm{F} \), the range from \( 96.73^{\circ} \mathrm{F} \) to \( 99.45^{\circ} \mathrm{F} \) indeed captures approximately 95% of healthy adults. Now, for the second part, we’ll examine the temperatures \( 97.41^{\circ} \mathrm{F} \) and \( 98.77^{\circ} \mathrm{F} \). These correspond to roughly 1 to 2 standard deviations from the mean (as \( 97.41^{\circ} \mathrm{F} \) is about one standard deviation below the mean, and \( 98.77^{\circ} \mathrm{F} \) is about one standard deviation above). According to the empirical rule, around 68% of healthy adults fall within 1 standard deviation, which would apply here. So, approximately 68% of healthy adults will have body temperatures between \( 97.41^{\circ} \mathrm{F} \) and \( 98.77^{\circ} \mathrm{F} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad