Pregunta

A construction worker needs to build a ramp for wheelchair access. If the height of the entrance is 3 feet and the ramp must create an angle of \( 30^{\circ} \) with the ground, what is the length of the ramp?

Ask by Parry Mccoy. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The ramp should be 6 feet long.

Solución

To determine the length of the ramp needed for wheelchair access, we can model the situation using a right triangle: - **Height of the entrance (opposite side)**: 3 feet - **Angle with the ground**: \( 30^{\circ} \) - **Ramp length (hypotenuse)**: \( L \) feet ### Using Trigonometry The sine of an angle in a right triangle is the ratio of the length of the opposite side to the hypotenuse: \[ \sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} \] Plugging in the known values: \[ \sin(30^{\circ}) = \frac{3}{L} \] We know that: \[ \sin(30^{\circ}) = \frac{1}{2} \] So, \[ \frac{1}{2} = \frac{3}{L} \implies L = \frac{3}{\frac{1}{2}} = 6 \text{ feet} \] ### Using the 30-60-90 Triangle Ratio In a 30-60-90 triangle, the sides are in the ratio \( 1 : \sqrt{3} : 2 \), where: - The side opposite \( 30^{\circ} \) is \( 1 \) unit - The hypotenuse is \( 2 \) units Given the opposite side is 3 feet, the hypotenuse (ramp length) is: \[ 2 \times 3 = 6 \text{ feet} \] ### Conclusion **The length of the ramp should be 6 feet.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the length of the ramp, we can use the sine function from trigonometry. The sine of an angle in a right triangle is the ratio of the opposite side to the hypotenuse. Here, the height of the entrance (3 feet) is the opposite side, and the length of the ramp is the hypotenuse. Using the sine function: \[ \sin(30^{\circ}) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{3}{\text{length of the ramp}} \] We know that \(\sin(30^{\circ})\) is \(0.5\), so we can set up the equation: \[ 0.5 = \frac{3}{\text{length of the ramp}} \] To find the length of the ramp, we rearrange the equation: \[ \text{length of the ramp} = \frac{3}{0.5} = 6 \text{ feet} \] So, the length of the ramp is 6 feet.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad