Question 4 (1 point) (04.01 MC) \( \triangle A B C \) is located at \( A(3,1), B(4,4) \), and \( C(5,1) \). Zackery says that \( \triangle A B C \) is an equilateral triangle, while Verna says that it is an isosceles triangle. Who is correct? a Zackery, because all of the sides are congruent b Zackery, Decause there are no congruent sides c Verna, because \( \overline{\mathrm{BC}} \cong \overline{\mathrm{AC}} \) d Verna, because \( \overline{A B} \cong \overline{\mathrm{BC}} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To determine who is correct, we need to calculate the lengths of each side of \( \triangle ABC \). Using the distance formula, we find: - \( AB = \sqrt{(4 - 3)^2 + (4 - 1)^2} = \sqrt{1^2 + 3^2} = \sqrt{10} \) - \( BC = \sqrt{(5 - 4)^2 + (1 - 4)^2} = \sqrt{1^2 + (-3)^2} = \sqrt{10} \) - \( AC = \sqrt{(5 - 3)^2 + (1 - 1)^2} = \sqrt{2^2 + 0^2} = 2 \) We can see \( AB \cong BC \) (both equal \( \sqrt{10} \)), while \( AC \neq AB \). Therefore, Verna is correct, and the triangle is isosceles since it has at least two congruent sides. Answer: c Verna, because \( \overline{\mathrm{BC}} \cong \overline{\mathrm{AC}} \)