Pregunta
upstudy study bank question image url

Groph f, hocate al points of oiscontunty, and dsouss the behavor of f at these points \[ f(x)=\left\{\begin{array}{ll} -2+x & \text { if } x<0 \\ 2-x & \text { if } x \geq 0 \end{array}\right. \] (Use a comma io smparato answors as noeded.) B. There are no points of discontinuily. Drecuss the behavior oll al its poini(s) of discontinuty. Find \( 1(x) \) at any points of discontinuity Select the correct choice below and, if necossary, fill in the answer box fo complele your chorce. A. At the point(s) of dismntinuity, the value(s) of the function \( l(x) \) isfare 2. (Use a comma to separale answers as needed.) B. There are no points of disconitnuity. Find \( \lim _{k \rightarrow c} f(x) \), whete \( c \) isfare the pnini(s) at which \( f(x) \) is discontnuous. Solect the corroct choice beiow and, if necassary, fill in the enswer bok to compelo your choice. A. \( \lim _{x \rightarrow c} f(x)= \) \( \square \) (Use a corrma lo separale answers as needed.) E. The limit does not exist.

Ask by Carrillo Fuentes. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There is a point of discontinuity at \( x = 0 \). At this point, the function has a jump discontinuity. The function approaches \(-2\) from the left and \(2\) from the right, so the limit does not exist.

Solución

Let's analyze the function \( f(x) \) to identify its points of discontinuity and discuss its behavior at those points. \[ f(x)=\left\{\begin{array}{ll} -2 + x & \text{if } x < 0 \\ 2 - x & \text{if } x \geq 0 \end{array}\right. \] ### 1. **Graph of \( f(x) \)** - **For \( x < 0 \):** \( f(x) = -2 + x \) This is a straight line with a slope of 1 and a y-intercept at \(-2\). - **For \( x \geq 0 \):** \( f(x) = 2 - x \) This is a straight line with a slope of \(-1\) and a y-intercept at \(2\). The graph consists of two straight lines that meet (or fail to meet) at \( x = 0 \). ### 2. **Points of Discontinuity** To determine if there are any points of discontinuity, especially at the boundary \( x = 0 \), we'll evaluate the left-hand limit, right-hand limit, and the function value at that point. - **Left-Hand Limit (\( x \to 0^- \)):** \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (-2 + x) = -2 + 0 = -2 \] - **Right-Hand Limit (\( x \to 0^+ \)):** \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (2 - x) = 2 - 0 = 2 \] - **Function Value at \( x = 0 \):** \[ f(0) = 2 - 0 = 2 \] Since the left-hand limit (\(-2\)) and the right-hand limit (\(2\)) at \( x = 0 \) are not equal, the limit \( \lim_{x \to 0} f(x) \) does not exist. Therefore, \( x = 0 \) is a **point of discontinuity**. **Answer to Multiple-Choice Sections:** 1. **Points of Discontinuity:** - **A.** At the point(s) of discontinuity, the value(s) of the function \( f(x) \) is \(2\). 2. **Existence of Discontinuities:** - **B.** There are **no** points of discontinuity. *(Incorrect, since \( x = 0 \) is a point of discontinuity.)* 3. **Limit at Point of Discontinuity:** - **E.** The limit does not exist. ### 3. **Behavior at the Point of Discontinuity (\( x = 0 \))** - **Function Value:** \( f(0) = 2 \) - **Left-Hand Limit:** \( \lim_{x \to 0^-} f(x) = -2 \) - **Right-Hand Limit:** \( \lim_{x \to 0^+} f(x) = 2 \) - **Overall Limit:** \( \lim_{x \to 0} f(x) \) does **not** exist because the left-hand and right-hand limits are not equal. This type of discontinuity is known as a **jump discontinuity** because the function "jumps" from one value to another at \( x = 0 \). ### 4. **Summary** - **Point of Discontinuity:** \( x = 0 \) - **Function Value at \( x = 0 \):** \( f(0) = 2 \) - **Limit as \( x \to 0 \):** Does not exist ### 5. **Visualization** While I can't provide a visual graph here, you can sketch the graph as follows: - **For \( x < 0 \):** Draw a line starting from below, crossing \( y = -2 \) at \( x = 0 \) but **not** including the point \( (0, -2) \). - **For \( x \geq 0 \):** Draw a line starting from \( (0, 2) \) going downward with a slope of \(-1\). There will be a visible "jump" at \( x = 0 \) from \( y = -2 \) (approaching from the left) to \( y = 2 \) (at and approaching from the right).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

The function \( f(x) \) has a potential point of discontinuity at \( x = 0 \), where the definition of the function changes. To examine continuity, we calculate the left-hand limit as \( x \) approaches 0, which is \( \lim_{x \to 0^-} f(x) = -2 + 0 = -2 \). The right-hand limit is \( \lim_{x \to 0^+} f(x) = 2 - 0 = 2 \). Since these two limits are different, the function is discontinuous at \( x = 0 \). At the point of discontinuity \( x = 0 \), the value of the function is \( f(0) = 2 - 0 = 2 \). Since the left-hand limit is -2 and the right-hand limit is 2, we conclude that the function jumps from -2 to 2 at this point. Therefore, \( l(0) \) does not equal the limits from either side, confirming a jump discontinuity at this point. Now, as for the limits: A. \( \lim_{x \rightarrow 0} f(x) \) does not exist since \( \lim_{x \rightarrow 0^-} f(x) = -2 \) and \( \lim_{x \rightarrow 0^+} f(x) = 2 \).

preguntas relacionadas

Multiple Choice Identify the choice that best completes the statement or answers the question. Find any points of discontinuity for the rational function. 1. \( y=\frac{(x-7)(x+2)(x-9)}{(x-5)(x-2)} \) a. \( x=-5, x=-2 \) b. \( x=5, x=2 \) c. \( x=-7, x=2, x=-9 \) d. \( x=7, x=-2, x=9 \) 2. \( y=\frac{(x+7)(x+4)(x+2)}{(x+5)(x-3)} \) a. \( x=-5, x=3 \) b. \( x=7, x=4, x=2 \) c. \( x=-7, x=-4, x=-2 \) d. \( x=5, x=-3 \) 3. \( y=\frac{x+4}{x^{2}+8 x+15} \) a. \( x=-5, x=-3 \) b. \( x=-4 \) c. \( x=-5, x=3 \) d. \( x=5, x=3 \) 4. \( y=\frac{x-3}{x^{2}+3 x-10} \) a. \( x=-5, x=2 \) b. \( x=5, x=-2 \) c. \( x=3 \) d. \( x \) \( =-5, x=-2 \) 6. What are the points of discontinuity? Are they all removable? \[ y=\frac{(x-4)}{x^{2}-13 x+36} \] a. \( x=-9, x=-4, x=8 \); yes b. \( x=1, x=8, x= \) -8; no c. \( x=9, x=4 \); no d. \( x=-9, x=-4 \); no 7. Describe the vertical asymptote(s) and hole(s) for the graph of \( y=\frac{(x-2)(x-5)}{(x-5)(x+2)} \). a. asymptote: \( x=2 \) and hole: \( x=-5 \) b. asymptotes: \( x=-2 \) and hole: \( x=-5 \) c. asymptote: \( x=-2 \) and hole: \( x=5 \) d. asymptote: \( x=-2 \) and hole: \( x=-2 \) a. \( x=-3, x=-8 \); no b. \( x=5, x=-7, x=1 \); no c. \( x=-5, x=7, x=-1 \); yes d. \( x=3, x=8 \); yes 8. Describe the vertical asymptote(s) and hole(s) for the graph of \( y=\frac{x+1}{x^{2}+6 x+5} \). a. asymptote: \( x=-1 \) and hole: \( x=-1 \) b. asymptote: \( x=-1 \) and hole: \( x=-1 \) c. asymptotes: \( x=-1,-1 \) and hole: \( x=-1 \) d. asymptote: -5 and hole: \( x=-1 \), 9. Find the horizontal asymptote of the graph of \( y=\frac{7 x^{6}+7 x+3}{9 x^{5}+7 x+3} \). a. \( y=0 \) b. \( y=\frac{7}{9} \) c. no horizontal asymptote d. \( y=\frac{6}{5} \)
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad