Expand each as much as possible. (3 Points Each) \#6: \( \log _{3}(3 x) \) \#7: \( \log _{2}(x(x+1)) \) \#8: \( \log _{\left(x^{\wedge} 5^{\star} y^{\wedge} 6 / z^{\wedge} 4\right)} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To expand each logarithmic expression, we’ll apply the properties of logarithms, including the product rule, the quotient rule, and the power rule. For #6: We have \( \log _{3}(3 x) \). Using the product rule of logarithms, this can be expanded as: \[ \log_{3}(3) + \log_{3}(x). \] Since \( \log_{3}(3) = 1 \), the expression simplifies to: \[ 1 + \log_{3}(x). \] For #7: Next, we consider \( \log _{2}(x(x+1)) \). Again, using the product rule, we can expand this as: \[ \log_{2}(x) + \log_{2}(x+1). \] There are no further simplifications available here, so the expression remains: \[ \log_{2}(x) + \log_{2}(x+1). \] For #8: Here we start with \( \log _{\left(x^{\wedge} 5^{\star} y^{\wedge} 6 / z^{\wedge} 4\right)} \). To expand, we’ll apply the quotient rule first, which gives us: \[ \log_{\left(x^{5} y^{6}\right)} - \log_{\left(z^{4}\right)}. \] Using the quotient rule again on the first term: \[ \log_{x^{5}}(y^{6}) = \frac{\log_{y}(y^{6})}{\log_{y}(x^{5})} = \frac{6 \log_{y}(y)}{5 \log_{y}(x)} = \frac{6}{5}, \] So the first part becomes \( 5\log_{x}(x) + 6\log_{x}(y) \). Since \( \log_{x}(x) = 1 \), we can write: \[ 5 + \frac{6 \log_{x}(y)}{5} - \frac{4 \log_{x}(z)}{4} = \frac{6 \log_{x}(y)}{5} - 6. \] Thus, the complete expansion goes as follows: \[ \frac{6\log_{x}(y)}{5} - 4. \] So, in summary, the expansions are: 1. \( 1 + \log_{3}(x) \) 2. \( \log_{2}(x) + \log_{2}(x+1) \) 3. \( 5 + \frac{6\log_{x}(y)}{5} - 4 \)