Pregunta
upstudy study bank question image url

QUESTION 4 Given the quadratic number pattern: \( 69 ; 0-63 ; \ldots \) \( 4.1 \quad \) Write down the value of the next term in the pattern. \( 4.2 \quad \) Calculate an expression for the \( n^{\text {th }} \) term of the quadratic pattern. \( 4.3 \quad \) Determine the value of the SMALLEST term in this pattern.

Ask by Hardy Sandoval. in South Africa
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**4.1 Next Term:** -120 **4.2 \( n^{\text{th}} \) Term:** \( 3n^2 - 78n + 144 \) **4.3 Smallest Term:** -363

Solución

Let's analyze the given quadratic number pattern step by step. ### **Given Pattern:** \( 69; \ 0; \ -63; \ \ldots \) We'll assume the sequence corresponds to \( n = 1, 2, 3, \ldots \) with the respective terms. ### **4.1 Write down the value of the next term in the pattern.** To find the next term, we'll first determine the quadratic expression that describes the pattern. #### **Finding the Quadratic Expression:** Assume the \( n^{\text{th}} \) term is given by: \[ a(n) = An^2 + Bn + C \] Using the given terms: 1. For \( n = 1 \): \[ A(1)^2 + B(1) + C = 69 \] \[ A + B + C = 69 \quad \text{(Equation 1)} \] 2. For \( n = 2 \): \[ A(2)^2 + B(2) + C = 0 \] \[ 4A + 2B + C = 0 \quad \text{(Equation 2)} \] 3. For \( n = 3 \): \[ A(3)^2 + B(3) + C = -63 \] \[ 9A + 3B + C = -63 \quad \text{(Equation 3)} \] **Solving the Equations:** - Subtract **Equation 1** from **Equation 2**: \[ (4A + 2B + C) - (A + B + C) = 0 - 69 \] \[ 3A + B = -69 \quad \text{(Equation 4)} \] - Subtract **Equation 2** from **Equation 3**: \[ (9A + 3B + C) - (4A + 2B + C) = -63 - 0 \] \[ 5A + B = -63 \quad \text{(Equation 5)} \] - Subtract **Equation 4** from **Equation 5**: \[ (5A + B) - (3A + B) = -63 - (-69) \] \[ 2A = 6 \] \[ A = 3 \] - Substitute \( A = 3 \) into **Equation 4**: \[ 3(3) + B = -69 \] \[ 9 + B = -69 \] \[ B = -78 \] - Substitute \( A = 3 \) and \( B = -78 \) into **Equation 1**: \[ 3 - 78 + C = 69 \] \[ C = 144 \] **Quadratic Expression:** \[ a(n) = 3n^2 - 78n + 144 \] #### **Finding the 4th Term (\( n = 4 \)):** \[ a(4) = 3(4)^2 - 78(4) + 144 \] \[ a(4) = 3(16) - 312 + 144 \] \[ a(4) = 48 - 312 + 144 \] \[ a(4) = -120 \] **Answer to 4.1:** \[ \boxed{-120} \] --- ### **4.2 Calculate an expression for the \( n^{\text{th}} \) term of the quadratic pattern.** From the previous analysis, the \( n^{\text{th}} \) term is: \[ a(n) = 3n^2 - 78n + 144 \] **Answer to 4.2:** \[ \boxed{a(n) = 3n^2 - 78n + 144} \] --- ### **4.3 Determine the value of the SMALLEST term in this pattern.** Since the quadratic coefficient \( A = 3 \) is positive, the parabola opens upwards, and the smallest term occurs at the vertex. #### **Finding the Vertex:** The vertex of a quadratic \( a(n) = An^2 + Bn + C \) occurs at: \[ n = -\frac{B}{2A} \] Substituting \( A = 3 \) and \( B = -78 \): \[ n = -\frac{-78}{2 \times 3} \] \[ n = \frac{78}{6} \] \[ n = 13 \] #### **Calculating \( a(13) \):** \[ a(13) = 3(13)^2 - 78(13) + 144 \] \[ a(13) = 3(169) - 1014 + 144 \] \[ a(13) = 507 - 1014 + 144 \] \[ a(13) = -363 \] **Answer to 4.3:** \[ \boxed{-363} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The first part of this intriguing pattern shows that the terms are decreasing. If we observe closely, the difference between 69 and 0 is 69, and the difference between 0 and -63 is 63. Following this pattern, we can infer that the next term will decrease by an increasingly smaller amount, hinting that the next term should be around -63 minus a gradual decrease, which suggests the next term is -60. For the second inquiry, we need to express the \( n^{\text{th}} \) term. A general form for the \( n^{\text{th}} \) term in a quadratic pattern is usually expressed as \( an^2 + bn + c \). By examining the terms and their differences, we can derive the coefficients – which leads to something like \( -3n^2 + 6n - 63 \) if we carefully formulate the pattern's progression based on calculated differences. One of the common mistakes when determining the smallest term is overlooking how a quadratic function behaves. It's crucial to realize that the nature of quadratics means it will have a minimum or maximum point depending on the sign of the leading coefficient. Therefore, applying vertex concepts can help spot this smallest term more efficiently without missing vital details!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad