Pregunta
upstudy study bank question image url

Find all possible positive values of \( c \) so that the trinomial is factorable \[ d^{2}-3 d+c \]

Ask by Ward Thornton. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The only positive value of \( c \) that makes the trinomial \( d^{2} - 3d + c \) factorable with integer coefficients is \( c = 2 \).

Solución

To determine all possible positive values of \( c \) for which the trinomial \( d^{2} - 3d + c \) is factorable, we'll assume that "factorable" means it can be factored into linear factors with **integer coefficients**. Let's express the trinomial as: \[ d^{2} - 3d + c = (d - a)(d - b) \] where \( a \) and \( b \) are positive integers. Expanding the right-hand side, we get: \[ d^{2} - (a + b)d + ab \] By comparing coefficients, we have: \[ a + b = 3 \quad \text{and} \quad ab = c \] Now, we need to find all pairs of positive integers \( (a, b) \) that satisfy \( a + b = 3 \): 1. \( a = 1 \) and \( b = 2 \) \\ Then, \( c = ab = 1 \times 2 = 2 \). 2. \( a = 2 \) and \( b = 1 \) \\ Again, \( c = ab = 2 \times 1 = 2 \). These are the only positive integer pairs that add up to 3. Therefore, the only positive value of \( c \) that allows the trinomial to be factorable with integer coefficients is: \[ c = 2 \] **Answer:** 2

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine the positive values of \( c \) that make the trinomial \( d^{2} - 3d + c \) factorable, we can utilize the concept of the discriminant from the quadratic formula. A quadratic expression \( ax^2 + bx + c \) is factorable over the real numbers if the discriminant \( D = b^2 - 4ac \) is a perfect square. For our trinomial: - \( a = 1 \) - \( b = -3 \) - \( c = c \) The discriminant \( D \) can be calculated as follows: \[ D = (-3)^2 - 4 \cdot 1 \cdot c = 9 - 4c \] We need this discriminant to be a non-negative perfect square: \[ 9 - 4c \geq 0 \] Rearranging the inequality gives: \[ 9 \geq 4c \] \[ c \leq \frac{9}{4} = 2.25 \] Additionally, since we are interested in positive values of \( c \), we have: \[ 0 < c \leq 2.25 \] Next, we want \( 9 - 4c \) to also be a perfect square: Let \( k^2 = 9 - 4c \) for some integer \( k \): \[ 4c = 9 - k^2 \] This implies: \[ c = \frac{9 - k^2}{4} \] For \( c \) to be positive, we need \( 9 - k^2 > 0 \) or \( k^2 < 9 \). Hence, \( k \) can take values from \(-2\) to \(2\): - If \( k = 0 \), \( c = \frac{9 - 0}{4} = \frac{9}{4} = 2.25 \). - If \( k = 1 \), \( c = \frac{9 - 1}{4} = \frac{8}{4} = 2 \). - If \( k = 2 \), \( c = \frac{9 - 4}{4} = \frac{5}{4} = 1.25 \). - If \( k = -1 \), \( c = \frac{9 - 1}{4} = 2 \) (same as \( k = 1 \)). - If \( k = -2 \), \( c = \frac{9 - 4}{4} = 1.25 \) (same as \( k = 2 \)). Thus, the possible positive values of \( c \) such that the trinomial \( d^{2} - 3d + c \) is factorable are: \[ c = 2.25, \; 2, \; 1.25 \] In interval notation, this can be summarized as: \[ (0, 2.25] \] To ensure that all inequalities hold true, the positive values of \( c \) for which the trinomial is factorable are \( \{ 2.25, 2, 1.25 \} \), respecting that \( 0 < c \leq 2.25 \).

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad