Solve: \( |2 x+1|>8 \) Give your answer as an interval. Note: Type oo for the infinity symbol \( \infty \) and
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To solve the inequality \( |2x + 1| > 8 \), we can break it down into two separate cases: 1. \( 2x + 1 > 8 \) 2. \( 2x + 1 < -8 \) **Case 1:** \[ 2x + 1 > 8 \] Subtracting 1 from both sides gives: \[ 2x > 7 \] Dividing both sides by 2 results in: \[ x > \frac{7}{2} \] **Case 2:** \[ 2x + 1 < -8 \] Subtracting 1 from both sides gives: \[ 2x < -9 \] Dividing both sides by 2 results in: \[ x < -\frac{9}{2} \] Combining these results, the solution to the inequality \( |2x + 1| > 8 \) in interval notation is: \[ (-\infty, -\frac{9}{2}) \cup (\frac{7}{2}, \infty) \]