Pregunta
upstudy study bank question image url

Activity 5. Angle of Inclination. 22 January \( 20 z 5 \) 1. Determine the indination of the line. Round your answer to 2 decimal places with points \( A\left(3 ; \frac{7}{2}\right) \) \( B(-8 ;-2) \). 2. Determine the angle of inclination (correct to 1 decimal place) of the straight line through \( (2 ; 1) \neq(-3 ;- \) 3. Find the angle \( \theta \) and round off your answer to \( z \) decimal places if appropriate.

Ask by Gibson O'Quinn. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**1. Inclination of the Line:** - Slope (\( m \)) = \( \frac{1}{2} \) - Angle of Inclination (\( \alpha \)) ≈ **26.57 degrees** **2. Angle of Inclination for the Line Through \( (2, 1) \) and \( (-3, \, \text{?}) \):** - **Incomplete Information:** Please provide the complete coordinates of the second point to determine the angle. **3. Angle \( \theta \):** - **Incomplete Information:** Please provide the necessary details to find and round the angle \( \theta \). **Note:** Ensure all required information is provided for accurate calculations.

Solución

Sure, let's address each part of your problem step by step. ### **1. Determine the Inclination of the Line Through Points \( A(3, \frac{7}{2}) \) and \( B(-8, -2) \)** **Step 1: Calculate the Slope (\( m \)) of the Line** The slope of a line passing through two points \( A(x_1, y_1) \) and \( B(x_2, y_2) \) is given by: \[ m = \frac{y_2 - y_1}{x_2 - x_1} \] Plugging in the coordinates: \[ m = \frac{-2 - \frac{7}{2}}{-8 - 3} = \frac{-\frac{11}{2}}{-11} = \frac{11}{2 \times 11} = \frac{1}{2} \] **Step 2: Determine the Angle of Inclination (\( \alpha \))** The angle of inclination is the angle the line makes with the positive \( x \)-axis, calculated using the arctangent of the slope: \[ \alpha = \arctan(m) = \arctan\left(\frac{1}{2}\right) \] Using a calculator: \[ \alpha \approx 26.565^\circ \] **Step 3: Round the Angle** Rounded to two decimal places: \[ \alpha \approx 26.57^\circ \] **Answer:** The inclination of the line is **26.57 degrees**. --- ### **2. Determine the Angle of Inclination of the Straight Line Through \( (2, 1) \) and \( (-3, \, \text{?}) \)** It seems there might be a typo or missing information in this part of the question. Specifically, the coordinates for the second point are incomplete: \( (-3, - ) \). **To proceed, please provide the complete coordinates of the second point.** --- ### **3. Find the Angle \( \theta \) and Round Off Appropriately** This part also appears to be incomplete or missing specific details required to solve the problem, such as: - The points defining the line or additional information about \( \theta \). - The value of \( z \) indicating to how many decimal places to round the answer. **Please provide the missing details so I can assist you effectively.** --- Feel free to provide the additional information, and I'll be happy to help you with the remaining parts of your problem!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine the angle of inclination of a line through points \( A(3, \frac{7}{2}) \) and \( B(-8, -2) \), first calculate the slope \( m \) using the formula: \[ m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-2 - \frac{7}{2}}{-8 - 3} = \frac{-4.5}{-11} \approx 0.4091. \] Now, the angle of inclination \( \theta \) can be found using \( \tan(\theta) = m \). Therefore: \[ \theta = \arctan(0.4091) \approx 22.0^\circ. \] For the second line that passes through the points \( (2, 1) \) and \( (-3, -y) \) (which is not provided), we would find the slope similarly and use the \( \tan^{-1} \) function to determine the angle of inclination once we have the coordinates of the second point. For a common mistake, always remember that the angle should be in the right quadrant based on your slope calculation; angles measured from the positive x-axis should reflect whether the slope is positive or negative.

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad